mirea-projects/Second term/Industrial programming technologies/1/4.cpp
2024-09-24 02:22:33 +03:00

101 lines
2.4 KiB
C++
Executable File

#include <cmath>
#include <iostream>
using namespace std;
class Triangle {
public:
double a, b, c;
Triangle(double an, double bn, double cn) : a(an), b(bn), c(cn) {
if (!Triangle::exst_tr()) {
this->a = 3;
this->b = 4;
this->c = 5;
}
}
bool exst_tr();
void show();
double perimetr();
double square();
bool is_similar(Triangle & t2);
double get_a();
double get_b();
double get_c();
};
bool Triangle::exst_tr() {
return Triangle::perimetr() - max(max(this->a, this->b), this->c) * 2 > 0;
}
void Triangle::show() {
cout << "A = " << this->a << ", B = " << this->b << ", C = " << this->c << endl;
}
double Triangle::perimetr() {
return this->a + this->b + this->c;
}
double Triangle::square() {
double p = Triangle::perimetr() / 2;
return sqrt(p * (p - this->a) * (p - this->b) * (p - this->c));
}
bool Triangle::is_similar(Triangle & t2) {
double max_t1 = max(max(this->a, this->b), this->c);
double max_t2 = max(max(t2.a, t2.b), t2.c);
double min_t1 = min(min(this->a, this->b), this->c);
double min_t2 = min(min(t2.a, t2.b), t2.c);
double mid_t1 = Triangle::perimetr() - max_t1 - min_t1;
double mid_t2 = t2.perimetr() - max_t2 - min_t2;
return max_t1 / max_t2 == min_t1 / min_t2 && max_t1 / max_t2 == mid_t1 / mid_t2;
}
double Triangle::get_a() {
return this->a;
}
double Triangle::get_b() {
return this->b;
}
double Triangle::get_c() {
return this->c;
}
class Circle {
public:
float r;
float x, y;
Circle(float rn, float xn, float yn) : r(rn), x(xn), y(yn) {};
void set_circle(float r, float x, float y);
float square();
bool triangle_around(Triangle & t);
bool triangle_in(Triangle & t);
bool check_circle(Circle & c);
};
void Circle::set_circle(float r, float x, float y) {
this->r = r;
this->x = x;
this->y = y;
}
float Circle::square() {
return 3.14 * pow(r, 2);
}
bool Circle::triangle_around(Triangle & t) {
return t.square() == (t.a * t.b * t.c) / (4 * this->r);
}
bool Circle::triangle_in(Triangle & t) {
return t.square() == t.perimetr() / (2 * this->r);
}
bool Circle::check_circle(Circle & c) {
float center_distance = sqrt(pow(abs(this->x - c.x), 2) + pow(abs(this->y - c.y), 2));
return center_distance < (c.r + this->r) && center_distance > abs(c.r - this->r);
}