1423 lines
236 KiB
Plaintext
1423 lines
236 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Рабочая тетрадь No 5"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 116,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import numpy as np\n",
|
|||
|
"import pandas as pd\n",
|
|||
|
"from sklearn import tree, metrics\n",
|
|||
|
"from sklearn.tree import DecisionTreeRegressor\n",
|
|||
|
"from sklearn.tree import DecisionTreeClassifier\n",
|
|||
|
"from sklearn.model_selection import train_test_split\n",
|
|||
|
"from sklearn.metrics import classification_report, confusion_matrix"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"### 1.2.3 Задание\n",
|
|||
|
"\n",
|
|||
|
"Создайте класс по работе с тригонометрическими функциями. В классе \n",
|
|||
|
"должны быть реализованы функции вычисления: \n",
|
|||
|
"- косинуса; \n",
|
|||
|
"- синуса; \n",
|
|||
|
"- тангенса; \n",
|
|||
|
"- арксинуса; \n",
|
|||
|
"- арккосинуса; \n",
|
|||
|
"- арктангенса; \n",
|
|||
|
"- перевода из градусов в радианы."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 117,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"class TrigFunctions:\n",
|
|||
|
" def __init__(self, precision=10):\n",
|
|||
|
" # Константа для pi\n",
|
|||
|
" self.pi = 3.141592653589793\n",
|
|||
|
" # Переменная точности для вычислений\n",
|
|||
|
" self.precision = precision\n",
|
|||
|
"\n",
|
|||
|
" # Факториал для ряда Тейлора\n",
|
|||
|
" def factorial(self, n):\n",
|
|||
|
" result = 1\n",
|
|||
|
" for i in range(2, n + 1):\n",
|
|||
|
" result *= i\n",
|
|||
|
" return result\n",
|
|||
|
"\n",
|
|||
|
" # Приближенное вычисление синуса с помощью ряда Тейлора\n",
|
|||
|
" def sin(self, angle_radians):\n",
|
|||
|
" sin_approx = 0\n",
|
|||
|
" \n",
|
|||
|
" for n in range(self.precision):\n",
|
|||
|
" sign = (-1) ** n\n",
|
|||
|
" term = (angle_radians ** (2 * n + 1)) / self.factorial(2 * n + 1)\n",
|
|||
|
" sin_approx += sign * term\n",
|
|||
|
" \n",
|
|||
|
" return sin_approx\n",
|
|||
|
"\n",
|
|||
|
" # Приближенное вычисление косинуса с помощью ряда Тейлора\n",
|
|||
|
" def cos(self, angle_radians):\n",
|
|||
|
" cos_approx = 0\n",
|
|||
|
" \n",
|
|||
|
" for n in range(self.precision):\n",
|
|||
|
" sign = (-1) ** n\n",
|
|||
|
" term = (angle_radians ** (2 * n)) / self.factorial(2 * n)\n",
|
|||
|
" cos_approx += sign * term\n",
|
|||
|
" \n",
|
|||
|
" return cos_approx\n",
|
|||
|
"\n",
|
|||
|
" # Приближенное вычисление тангенса как sin/cos\n",
|
|||
|
" def tan(self, angle_radians):\n",
|
|||
|
" return self.sin(angle_radians) / self.cos(angle_radians)\n",
|
|||
|
"\n",
|
|||
|
" # Приближенное вычисление арксинуса с использованием метода Ньютона\n",
|
|||
|
" def arcsin(self, value):\n",
|
|||
|
" if value < -1 or value > 1:\n",
|
|||
|
" return None # Арксинус определен только на отрезке [-1, 1]\n",
|
|||
|
" \n",
|
|||
|
" x = value\n",
|
|||
|
" \n",
|
|||
|
" for _ in range(self.precision):\n",
|
|||
|
" x -= (self.sin(x) - value) / self.cos(x)\n",
|
|||
|
" \n",
|
|||
|
" return x\n",
|
|||
|
"\n",
|
|||
|
" # Арккосинус как pi/2 - арксинус\n",
|
|||
|
" def arccos(self, value):\n",
|
|||
|
" return self.pi / 2 - self.arcsin(value)\n",
|
|||
|
"\n",
|
|||
|
" # Приближенное вычисление арктангенса с использованием метода Ньютона\n",
|
|||
|
" def arctan(self, value):\n",
|
|||
|
" x = value\n",
|
|||
|
" \n",
|
|||
|
" for _ in range(self.precision):\n",
|
|||
|
" x -= (self.tan(x) - value) / (1 + value ** 2)\n",
|
|||
|
" \n",
|
|||
|
" return x"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 118,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Угол (рад): 0.7853981633974483\n",
|
|||
|
"sin: 0.7071067811865475\n",
|
|||
|
"cos: 0.7071067811865475\n",
|
|||
|
"tan: 1.0\n",
|
|||
|
"arcsin (рад): 0.7853981633974483\n",
|
|||
|
"arccos (рад): 0.7853981633974483\n",
|
|||
|
"arctan (рад): 0.7853981633974483\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"trig_functions = TrigFunctions(precision=10)\n",
|
|||
|
"\n",
|
|||
|
"angle = 3.141592653589793 / 4 # pi/4 радиан (45 градусов)\n",
|
|||
|
"\n",
|
|||
|
"sin_value = trig_functions.sin(angle)\n",
|
|||
|
"cos_value = trig_functions.cos(angle)\n",
|
|||
|
"tan_value = trig_functions.tan(angle)\n",
|
|||
|
"arcsin_value = trig_functions.arcsin(sin_value)\n",
|
|||
|
"arccos_value = trig_functions.arccos(cos_value)\n",
|
|||
|
"arctan_value = trig_functions.arctan(tan_value)\n",
|
|||
|
"\n",
|
|||
|
"print(\"Угол (рад):\", angle)\n",
|
|||
|
"print(\"sin:\", sin_value)\n",
|
|||
|
"print(\"cos:\", cos_value)\n",
|
|||
|
"print(\"tan:\", tan_value)\n",
|
|||
|
"print(\"arcsin (рад):\", arcsin_value)\n",
|
|||
|
"print(\"arccos (рад):\", arccos_value)\n",
|
|||
|
"print(\"arctan (рад):\", arctan_value)\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"### 1.2.2 Задание 1\n",
|
|||
|
"\n",
|
|||
|
"Представьте дерево показанное на рисунке с использованием списка из \n",
|
|||
|
"списков. Выведите на печать корень дерева, а также его левое и правое \n",
|
|||
|
"поддеревья."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 119,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Корень: a\n",
|
|||
|
"Левое поддерево: ['b', ['d', []], ['e', []]]\n",
|
|||
|
"Правое поддерево: ['c', ['f', []]]\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"tr = ['a', ['b', ['d', []], ['e', []]], ['c', ['f', []]]]\n",
|
|||
|
"\n",
|
|||
|
"print(f\"Корень: {tr[0]}\")\n",
|
|||
|
"print(f\"Левое поддерево: {tr[1]}\")\n",
|
|||
|
"print(f\"Правое поддерево: {tr[2]}\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"### 1.2.2 Задание 2\n",
|
|||
|
"\n",
|
|||
|
"Дан класс, описывающий бинарное дерево. \n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"```python\n",
|
|||
|
"class Tree: \n",
|
|||
|
" def __init__(self, data): \n",
|
|||
|
" self.left = None \n",
|
|||
|
" self.right = None \n",
|
|||
|
" self.data = data \n",
|
|||
|
" def PrintTree(self): \n",
|
|||
|
" print(self.data) \n",
|
|||
|
"```\n",
|
|||
|
"Реализуйте в классе функцию для вставки нового элемента в дерево по \n",
|
|||
|
"следующим правилам: \n",
|
|||
|
" \n",
|
|||
|
"- Левое поддерево узла содержит только узлы со значениями меньше, \n",
|
|||
|
"чем значение в узле. \n",
|
|||
|
"- Правое поддерево узла содержит только узлы со значениями меньше, \n",
|
|||
|
"чем значение в узле. \n",
|
|||
|
"- Каждое из левого и правого поддеревьев также должно быть \n",
|
|||
|
"бинарным деревом поиска. \n",
|
|||
|
"- Не должно быть повторяющихся узлов. \n",
|
|||
|
"\n",
|
|||
|
"Метод вставки сравнивает значение узла с родительским узлом и решает \n",
|
|||
|
"куда доваить элемент (в левое или правое поддерево). Перепишите, метод \n",
|
|||
|
"PrintTree для печати полной версии дерева."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 120,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"class BinaryTree: \n",
|
|||
|
" def __init__(self, data): \n",
|
|||
|
" self.left = None \n",
|
|||
|
" self.right = None \n",
|
|||
|
" self.data = data\n",
|
|||
|
"\n",
|
|||
|
" def insert(self, data):\n",
|
|||
|
" if data < self.data:\n",
|
|||
|
" if self.left is None:\n",
|
|||
|
" self.left = BinaryTree(data)\n",
|
|||
|
" else:\n",
|
|||
|
" self.left.insert(data)\n",
|
|||
|
" elif data > self.data:\n",
|
|||
|
" if self.right is None:\n",
|
|||
|
" self.right = BinaryTree(data)\n",
|
|||
|
" else:\n",
|
|||
|
" self.right.insert(data)\n",
|
|||
|
"\n",
|
|||
|
" def Print(self, level=0):\n",
|
|||
|
" if self.right:\n",
|
|||
|
" self.right.Print(level + 1)\n",
|
|||
|
" \n",
|
|||
|
" print(' ' * 4 * level + '->', self.data)\n",
|
|||
|
" if self.left:\n",
|
|||
|
" self.left.Print(level + 1) "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 121,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
" -> 17\n",
|
|||
|
" -> 15\n",
|
|||
|
" -> 12\n",
|
|||
|
"-> 10\n",
|
|||
|
" -> 7\n",
|
|||
|
" -> 5\n",
|
|||
|
" -> 3\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"root = BinaryTree(10)\n",
|
|||
|
"root.insert(5)\n",
|
|||
|
"root.insert(15)\n",
|
|||
|
"root.insert(3)\n",
|
|||
|
"root.insert(7)\n",
|
|||
|
"root.insert(12)\n",
|
|||
|
"root.insert(17)\n",
|
|||
|
"\n",
|
|||
|
"root.Print()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"### 1.3.1 Задание\n",
|
|||
|
"\n",
|
|||
|
"Постройте классификатор на основе дерева принятия решений следующего датасета:\n",
|
|||
|
"\n",
|
|||
|
"```python\n",
|
|||
|
"X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])\n",
|
|||
|
"target = [0, 0, 0, 1, 1, 1]\n",
|
|||
|
"```"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 122,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"ds = pd.DataFrame(np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]))\n",
|
|||
|
"target = [0, 0, 0, 1, 1, 1]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 123,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"x_train, x_test, y_train, y_test = train_test_split(ds, target, test_size=0.2)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 124,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"[Text(0.5, 0.75, 'x[1] <= -0.5\\ngini = 0.375\\nsamples = 4\\nvalue = [1, 3]'),\n",
|
|||
|
" Text(0.25, 0.25, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n",
|
|||
|
" Text(0.375, 0.5, 'True '),\n",
|
|||
|
" Text(0.75, 0.25, 'gini = 0.0\\nsamples = 3\\nvalue = [0, 3]'),\n",
|
|||
|
" Text(0.625, 0.5, ' False')]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 124,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABw00lEQVR4nO3dd1xT1/8/8FfYIEOQ4QIRXAii4qwVUFyA+kEruAdurQPrqFqrOOuqW9EqFupCHFSruBHEqlUBBUHFxVAcyJIlM/f3Bz/uNxESAglJIO/n48HjcZN77j3vEE5459xzz+EwDMOAEEIIIQpLSdYBEEIIIUS2KBkghBBCFBwlA4QQQoiCo2SAEEIIUXCUDBBCCCEKjpIBQgghRMFRMkAIIYQoOEoGCCGEEAVHyQAhhBCi4CgZIIQQQhQcJQOEEEKIgqNkgBBCCFFwlAwQQgghCo6SAUIIIUTBUTJACCGEKDhKBgghhBAFR8kAIYQQouAoGSCEEEIUnIqsAyDyKTk5GWlpabIOgxBSCwwNDWFmZibrMIgcoWSAVJCcnAwrKyvk5+fLOhRCSC3Q0tLCs2fPKCEgLEoGSAVpaWnIz8/HsWPHYGVlJetwCCES9OzZM4wfPx5paWmUDBAWJQNEICsrK9jZ2ck6DEIIIbWMBhASQgghCo6SAUIIIUTBUTJACCGEKDhKBgghhBAFR8kAIYQQouAoGSCEEEIUHCUDhBBCiIKjZIAQQghRcJQMEEIIIQqOkgFCCCFEwVEyQOqFxMREcDicSn8WLFggtTg8PT0FxkEIIfKKkgGi8JKSkvD333/j119/haurKxo3bsz3TzwxMVHWIRIxJSUlYdWqVbCzs4OhoSE0NTXRsmVLjBgxAmfOnAHDMBKtT1hSWNmPoaGhROsnpLpooSJS71hYWGD27Nns4y5duggsO3r0aAQGBkqs7tGjR8PGxoZ9/NtvvyEzM1Ni5yfVd/DgQSxcuBB5eXl8zycmJiIxMRFBQUHo27cvTpw4gcaNG8soSkJki5IBUu+Ymppi8eLFIpUtKCio8FyjRo2Qnp5eo7qdnZ3h7OzMPt67dy8lAzLk6+uLmTNnso8tLCzg5uYGfX19xMfHIygoCF+/fkVoaCicnZ0RHh4OXV1dicYwa9YsWFpaCi2jpaUl0ToJqS5KBohCMzExgaurK+zs7NifFi1a0DX+eiAhIQFz585lH//444/YvXs3lJWV2ecSExPh7OyM+Ph4REdHY/ny5di3b59E4xg1ahT69Okj0XMSImmUDBCF9scff8g6BKkrKSnB9evXUVBQgOHDh8s6nFqzatUqFBYWAgB69+6NPXv2QEmJf5iUubk5zpw5Azs7OxQXF+PgwYP46aef0KpVK1mETIjM0ABCIhPPnj1DgwYN2AFUFy5cEFr+9evX0NXVZcufOnVKSpHWHxEREViwYAGaNWsGV1dX3Lp1S9Yh1Zq8vDycPXuWfbxy5coKiUA5GxsbjBgxAkBZonT8+HGpxEiIPKFkgMiElZUVdu3axT6ePHkyUlJSKi1bXFyMMWPGICcnBwAwdepUjBw5Uipx1nWJiYnYsGEDrKys0K1bN+zatQupqamyDqvWXbt2DV+/fgUA6Ovro3///kLLe3h4sNt///13rcZGiDyiZIDIzLRp09h/6unp6Rg/fjy4XG6Fcr/88gsePnwIAGjXrh12794t1TjrmqysLBw6dAiOjo6wsLDAr7/+iufPn7P7GzduDC8vL76BdfVNZGQku92rVy+BvQLl7O3t2e24uDgUFRVJLJb169ejXbt2aNCgATQ1NdG8eXM4Oztjy5YtSEtLk1g9hIiDkgEiUwcPHoS5uTkAICwsDBs2bODbf/XqVWzbtg0AoK6ujpMnT9LI60oUFxfj/PnzcHd3R+PGjTFjxgyEh4ez98/r6upi0qRJuHr1Kt69e4edO3fCyspK4Pmqe598VT+enp5S+k2UiYuLY7dbt25dZXkjIyPo6ekBKLtUEB8fL7FYQkJCEB8fj/z8fBQUFCAlJQVXr17F0qVL0aJFC2zfvl1idRFSUzSAkMiUnp4eAgICYG9vj5KSEqxZswZOTk74/vvv8enTJ0yaNIn9h7ZlyxZ07NhRxhHLl7t37+LYsWMIDAxERkYG3z41NTW4uLhg3LhxGDp0KDQ0NGQUpfR9/PiR3W7evLlIxzRv3hxfvnxhj+/QoYPYcTRv3hy9evVC69atoa2tjezsbERHR+PmzZsoKChAfn4+Fi1ahPj4eIUczErkByUDROZ69uyJdevWYfny5SgtLcXYsWPx6NEjTJw4EZ8+fQIADB06FPPnz5dxpPLh5cuXOHbsGI4fP47Xr1/z7VNSUoK9vT3GjRsHd3d36Ovr16iObydPEpckzyWK8vElANCgQQORjuHtceI9viZcXFwwe/Zs9OjRo9L9nz59gpeXFzvh1cGDB9GtWzdMmzZNrHoJqSlKBohcWLp0KUJCQnDjxg0kJyejc+fOSE5OBgA0bdoUfn5+Mo5Q9i5cuIDffvsN//33X4V9nTp1wtixYzFmzBiRvwkL8+3kSXVN+eBBoKyHRBS8PSf5+fli1T9q1Cih+01MTHDy5EmoqKiwdy+sWrUKEyZMgLq6ulh1E1ITlAwQucDhcHD06FF07NgRqampbCKgpKSEY8eOoVGjRjKOUPbOnj3LlwiYmZlh/PjxGDduHNq3by/DyGpXdnY2Dh48KLSMi4sLrK2t2ceamprstqiDAXlno5TWuJRdu3bh/PnzyM3NxYcPH3D79u0q73wgpDZQMkDkRuPGjbFmzRq+dQXmz5+Pvn37yjAq+ZWRkYGkpCQkJSWhTZs2UFGpn805IyMDS5YsEVrG0NCQLxnQ0dFht79dk0AQ3t4A3uNrU6NGjdCvXz+cP38eQNkYEEoGiCzUz08PUifl5eVh586dfM/duHEDBQUFCjX4TZDZs2ejpKQE586dQ15eHnJzc3H8+HEcP34cRkZG8PDwwNixY9GrVy+xp1O+cuUKYmNjJRR52ZgBaV524F1w6N27dyIdw1tOmgsW8d7tUD5GhhBpo2SAyI158+axt3RxOBwwDIPY2FgsXLgQPj4+Mo5O9nr06IEePXogNzcXQUFBOHbsGEJCQsDlcvH582f4+PjAx8cH5ubmGDNmDMaNG8f3bbk6Tp48ib/++ktisU+aNKnGyYC5uXm1lxi2trbGuXPnAJQNuKxKWloaeyeBiooK2rZtW+04a4rWwSDygOYZIHLh5MmT7CBBPT09XL16Fdra2gCA/fv3sx/sBNDW1sbEiRNx7do1vHv3Dr///jvfLZeJiYnYuHEjbGxs0LFjR2zevJkdg6Eo7Ozs2O179+5VmUzcvn2b3W7fvr3Igw4l4dWrV+y2iYmJ1OolhBclA0TmEhMTMWvWLPbxwYMHMWDAAOzZs4d9burUqSJ39yqSJk2aYNGiRXj8+DGePHmCn3/+me9ugpiYGCxbtgzm5uZwcHDAgQMHRFqe2d/fHwzDSOzH39+/Fn8LFQ0cOJC9tJSRkYGQkBCh5c+cOcNuS3PxpszMTNy4cYN9LOhWREJqGyUDRKZKSkowZswYtouWd90BT09PjBkzBkDZB7qg6YpJGRsbG2zevBlJSUkICQnB5MmToaurCwBgGAa3b9/G7Nmz0aRJEwwdOpTv23B9o62tzS4+BADr1q0T2Dvw9OlTnD59GgCgrKyMcePGSSVGAFiwYAE7p4GxsTEcHR2lVjchvCgZIDK1atUq9na5ytYdOHDgAFq2bAkAuHXrVoXpiklFSkpKcHJywp9//omPHz/i5MmTGDx4MHu3QXFxMS5evMi3ql99tHbtWra7Pzw8HF5eXigtLeUrk5SUBHd3dxQXFwMApk+fLnT6Yt4plgX1dixcuBCrV68Wemnm8+fPGDduHI4cOcI+t2bNGhooS2SGBhASmbl58yY2b94MQPC6A7q6ujhx4gTfdMX9+vVDr169JBJDXFwcvL29hZb58ccfK8S1Zs2aGg/OkyZNTU2MGjUKo0aNwufPn3Hy5EkcPXqUXfipPrOwsMDu3bvZS1B79uzBpUuX4ObmBn19fcT
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"classifier = DecisionTreeClassifier()\n",
|
|||
|
"classifier.fit(x_train, y_train)\n",
|
|||
|
"\n",
|
|||
|
"tree.plot_tree(classifier)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 125,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"[0 0]\n",
|
|||
|
"[[2]]\n",
|
|||
|
" precision recall f1-score support\n",
|
|||
|
"\n",
|
|||
|
" 0 1.00 1.00 1.00 2\n",
|
|||
|
"\n",
|
|||
|
" accuracy 1.00 2\n",
|
|||
|
" macro avg 1.00 1.00 1.00 2\n",
|
|||
|
"weighted avg 1.00 1.00 1.00 2\n",
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"/Users/nktkln/.pyenv/versions/3.11.0/lib/python3.11/site-packages/sklearn/metrics/_classification.py:409: UserWarning: A single label was found in 'y_true' and 'y_pred'. For the confusion matrix to have the correct shape, use the 'labels' parameter to pass all known labels.\n",
|
|||
|
" warnings.warn(\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"y_pred = classifier.predict(x_test)\n",
|
|||
|
"\n",
|
|||
|
"print(y_pred)\n",
|
|||
|
"print(confusion_matrix(y_test, y_pred))\n",
|
|||
|
"print(classification_report(y_test, y_pred))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"### 1.4.1 Задание\n",
|
|||
|
"\n",
|
|||
|
"Задание. Постройте модель регрессии для данных из предыдущей рабочей \n",
|
|||
|
"тетради.Для примера можно взять потребления газа (в миллионах \n",
|
|||
|
"галлонов) в 48 штатах США или набор данных о качестве красного вина: \n",
|
|||
|
"https://raw.githubusercontent.com/likarajo/petrol_consumption/master/data/petrol_consumption.csv \n",
|
|||
|
"https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality/master/winequality-red.csv \n",
|
|||
|
"\n",
|
|||
|
"Постройте прогноз. Оцените точность модели."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 126,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>fixed acidity</th>\n",
|
|||
|
" <th>volatile acidity</th>\n",
|
|||
|
" <th>citric acid</th>\n",
|
|||
|
" <th>residual sugar</th>\n",
|
|||
|
" <th>chlorides</th>\n",
|
|||
|
" <th>free sulfur dioxide</th>\n",
|
|||
|
" <th>total sulfur dioxide</th>\n",
|
|||
|
" <th>density</th>\n",
|
|||
|
" <th>pH</th>\n",
|
|||
|
" <th>sulphates</th>\n",
|
|||
|
" <th>alcohol</th>\n",
|
|||
|
" <th>quality</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>count</th>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" <td>1599.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>mean</th>\n",
|
|||
|
" <td>8.319637</td>\n",
|
|||
|
" <td>0.527821</td>\n",
|
|||
|
" <td>0.270976</td>\n",
|
|||
|
" <td>2.538806</td>\n",
|
|||
|
" <td>0.087467</td>\n",
|
|||
|
" <td>15.874922</td>\n",
|
|||
|
" <td>46.467792</td>\n",
|
|||
|
" <td>0.996747</td>\n",
|
|||
|
" <td>3.311113</td>\n",
|
|||
|
" <td>0.658149</td>\n",
|
|||
|
" <td>10.422983</td>\n",
|
|||
|
" <td>5.636023</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>std</th>\n",
|
|||
|
" <td>1.741096</td>\n",
|
|||
|
" <td>0.179060</td>\n",
|
|||
|
" <td>0.194801</td>\n",
|
|||
|
" <td>1.409928</td>\n",
|
|||
|
" <td>0.047065</td>\n",
|
|||
|
" <td>10.460157</td>\n",
|
|||
|
" <td>32.895324</td>\n",
|
|||
|
" <td>0.001887</td>\n",
|
|||
|
" <td>0.154386</td>\n",
|
|||
|
" <td>0.169507</td>\n",
|
|||
|
" <td>1.065668</td>\n",
|
|||
|
" <td>0.807569</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>min</th>\n",
|
|||
|
" <td>4.600000</td>\n",
|
|||
|
" <td>0.120000</td>\n",
|
|||
|
" <td>0.000000</td>\n",
|
|||
|
" <td>0.900000</td>\n",
|
|||
|
" <td>0.012000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>6.000000</td>\n",
|
|||
|
" <td>0.990070</td>\n",
|
|||
|
" <td>2.740000</td>\n",
|
|||
|
" <td>0.330000</td>\n",
|
|||
|
" <td>8.400000</td>\n",
|
|||
|
" <td>3.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>25%</th>\n",
|
|||
|
" <td>7.100000</td>\n",
|
|||
|
" <td>0.390000</td>\n",
|
|||
|
" <td>0.090000</td>\n",
|
|||
|
" <td>1.900000</td>\n",
|
|||
|
" <td>0.070000</td>\n",
|
|||
|
" <td>7.000000</td>\n",
|
|||
|
" <td>22.000000</td>\n",
|
|||
|
" <td>0.995600</td>\n",
|
|||
|
" <td>3.210000</td>\n",
|
|||
|
" <td>0.550000</td>\n",
|
|||
|
" <td>9.500000</td>\n",
|
|||
|
" <td>5.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>50%</th>\n",
|
|||
|
" <td>7.900000</td>\n",
|
|||
|
" <td>0.520000</td>\n",
|
|||
|
" <td>0.260000</td>\n",
|
|||
|
" <td>2.200000</td>\n",
|
|||
|
" <td>0.079000</td>\n",
|
|||
|
" <td>14.000000</td>\n",
|
|||
|
" <td>38.000000</td>\n",
|
|||
|
" <td>0.996750</td>\n",
|
|||
|
" <td>3.310000</td>\n",
|
|||
|
" <td>0.620000</td>\n",
|
|||
|
" <td>10.200000</td>\n",
|
|||
|
" <td>6.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>75%</th>\n",
|
|||
|
" <td>9.200000</td>\n",
|
|||
|
" <td>0.640000</td>\n",
|
|||
|
" <td>0.420000</td>\n",
|
|||
|
" <td>2.600000</td>\n",
|
|||
|
" <td>0.090000</td>\n",
|
|||
|
" <td>21.000000</td>\n",
|
|||
|
" <td>62.000000</td>\n",
|
|||
|
" <td>0.997835</td>\n",
|
|||
|
" <td>3.400000</td>\n",
|
|||
|
" <td>0.730000</td>\n",
|
|||
|
" <td>11.100000</td>\n",
|
|||
|
" <td>6.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>max</th>\n",
|
|||
|
" <td>15.900000</td>\n",
|
|||
|
" <td>1.580000</td>\n",
|
|||
|
" <td>1.000000</td>\n",
|
|||
|
" <td>15.500000</td>\n",
|
|||
|
" <td>0.611000</td>\n",
|
|||
|
" <td>72.000000</td>\n",
|
|||
|
" <td>289.000000</td>\n",
|
|||
|
" <td>1.003690</td>\n",
|
|||
|
" <td>4.010000</td>\n",
|
|||
|
" <td>2.000000</td>\n",
|
|||
|
" <td>14.900000</td>\n",
|
|||
|
" <td>8.000000</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" fixed acidity volatile acidity citric acid residual sugar \n",
|
|||
|
"count 1599.000000 1599.000000 1599.000000 1599.000000 \\\n",
|
|||
|
"mean 8.319637 0.527821 0.270976 2.538806 \n",
|
|||
|
"std 1.741096 0.179060 0.194801 1.409928 \n",
|
|||
|
"min 4.600000 0.120000 0.000000 0.900000 \n",
|
|||
|
"25% 7.100000 0.390000 0.090000 1.900000 \n",
|
|||
|
"50% 7.900000 0.520000 0.260000 2.200000 \n",
|
|||
|
"75% 9.200000 0.640000 0.420000 2.600000 \n",
|
|||
|
"max 15.900000 1.580000 1.000000 15.500000 \n",
|
|||
|
"\n",
|
|||
|
" chlorides free sulfur dioxide total sulfur dioxide density \n",
|
|||
|
"count 1599.000000 1599.000000 1599.000000 1599.000000 \\\n",
|
|||
|
"mean 0.087467 15.874922 46.467792 0.996747 \n",
|
|||
|
"std 0.047065 10.460157 32.895324 0.001887 \n",
|
|||
|
"min 0.012000 1.000000 6.000000 0.990070 \n",
|
|||
|
"25% 0.070000 7.000000 22.000000 0.995600 \n",
|
|||
|
"50% 0.079000 14.000000 38.000000 0.996750 \n",
|
|||
|
"75% 0.090000 21.000000 62.000000 0.997835 \n",
|
|||
|
"max 0.611000 72.000000 289.000000 1.003690 \n",
|
|||
|
"\n",
|
|||
|
" pH sulphates alcohol quality \n",
|
|||
|
"count 1599.000000 1599.000000 1599.000000 1599.000000 \n",
|
|||
|
"mean 3.311113 0.658149 10.422983 5.636023 \n",
|
|||
|
"std 0.154386 0.169507 1.065668 0.807569 \n",
|
|||
|
"min 2.740000 0.330000 8.400000 3.000000 \n",
|
|||
|
"25% 3.210000 0.550000 9.500000 5.000000 \n",
|
|||
|
"50% 3.310000 0.620000 10.200000 6.000000 \n",
|
|||
|
"75% 3.400000 0.730000 11.100000 6.000000 \n",
|
|||
|
"max 4.010000 2.000000 14.900000 8.000000 "
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 126,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"url = 'https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Quality/master/winequality-red.csv'\n",
|
|||
|
"\n",
|
|||
|
"ds = pd.read_csv(url)\n",
|
|||
|
"\n",
|
|||
|
"ds.describe()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 127,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"X = ds.iloc[:, :-1].values\n",
|
|||
|
"y = ds.iloc[:, -1].values\n",
|
|||
|
"\n",
|
|||
|
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 128,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"[Text(0.49800740259424797, 0.9722222222222222, 'x[10] <= 10.525\\nsquared_error = 0.671\\nsamples = 1279\\nvalue = 5.647'),\n",
|
|||
|
" Text(0.214837677322192, 0.9166666666666666, 'x[9] <= 0.575\\nsquared_error = 0.431\\nsamples = 789\\nvalue = 5.373'),\n",
|
|||
|
" Text(0.35642253995822, 0.9444444444444444, 'True '),\n",
|
|||
|
" Text(0.10466867469879518, 0.8611111111111112, 'x[4] <= 0.251\\nsquared_error = 0.329\\nsamples = 323\\nvalue = 5.164'),\n",
|
|||
|
" Text(0.101559463661096, 0.8055555555555556, 'x[1] <= 0.587\\nsquared_error = 0.316\\nsamples = 322\\nvalue = 5.171'),\n",
|
|||
|
" Text(0.07267780800621843, 0.75, 'x[10] <= 10.05\\nsquared_error = 0.338\\nsamples = 148\\nvalue = 5.284'),\n",
|
|||
|
" Text(0.04508356004663817, 0.6944444444444444, 'x[4] <= 0.08\\nsquared_error = 0.267\\nsamples = 114\\nvalue = 5.175'),\n",
|
|||
|
" Text(0.027982899339292655, 0.6388888888888888, 'x[7] <= 0.996\\nsquared_error = 0.38\\nsamples = 58\\nvalue = 5.293'),\n",
|
|||
|
" Text(0.01554605518849592, 0.5833333333333334, 'x[8] <= 3.365\\nsquared_error = 0.196\\nsamples = 15\\nvalue = 4.933'),\n",
|
|||
|
" Text(0.009327633113097552, 0.5277777777777778, 'x[1] <= 0.44\\nsquared_error = 0.083\\nsamples = 11\\nvalue = 5.091'),\n",
|
|||
|
" Text(0.006218422075398368, 0.4722222222222222, 'x[6] <= 91.0\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.003109211037699184, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.009327633113097552, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.012436844150796735, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 9\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.021764477263894286, 0.5277777777777778, 'x[5] <= 13.5\\nsquared_error = 0.25\\nsamples = 4\\nvalue = 4.5'),\n",
|
|||
|
" Text(0.018655266226195105, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.02487368830159347, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.04041974349008939, 0.5833333333333334, 'x[2] <= 0.075\\nsquared_error = 0.383\\nsamples = 43\\nvalue = 5.419'),\n",
|
|||
|
" Text(0.034201321414691024, 0.5277777777777778, 'x[4] <= 0.073\\nsquared_error = 0.16\\nsamples = 5\\nvalue = 6.2'),\n",
|
|||
|
" Text(0.03109211037699184, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.03731053245239021, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.046638165565487756, 0.5277777777777778, 'x[8] <= 3.375\\nsquared_error = 0.321\\nsamples = 38\\nvalue = 5.316'),\n",
|
|||
|
" Text(0.04352895452778857, 0.4722222222222222, 'x[4] <= 0.058\\nsquared_error = 0.298\\nsamples = 34\\nvalue = 5.235'),\n",
|
|||
|
" Text(0.04041974349008939, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.046638165565487756, 0.4166666666666667, 'x[3] <= 3.9\\nsquared_error = 0.259\\nsamples = 33\\nvalue = 5.273'),\n",
|
|||
|
" Text(0.04352895452778857, 0.3611111111111111, 'x[7] <= 1.0\\nsquared_error = 0.215\\nsamples = 32\\nvalue = 5.312'),\n",
|
|||
|
" Text(0.04041974349008939, 0.3055555555555556, 'x[7] <= 0.996\\nsquared_error = 0.196\\nsamples = 30\\nvalue = 5.267'),\n",
|
|||
|
" Text(0.034201321414691024, 0.25, 'x[8] <= 3.31\\nsquared_error = 0.222\\nsamples = 6\\nvalue = 5.667'),\n",
|
|||
|
" Text(0.03109211037699184, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.03731053245239021, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.046638165565487756, 0.25, 'x[5] <= 5.5\\nsquared_error = 0.139\\nsamples = 24\\nvalue = 5.167'),\n",
|
|||
|
" Text(0.04352895452778857, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.04974737660318694, 0.19444444444444445, 'x[0] <= 7.25\\nsquared_error = 0.113\\nsamples = 23\\nvalue = 5.13'),\n",
|
|||
|
" Text(0.046638165565487756, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.052856587640886125, 0.1388888888888889, 'x[6] <= 77.5\\nsquared_error = 0.083\\nsamples = 22\\nvalue = 5.091'),\n",
|
|||
|
" Text(0.04974737660318694, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 15\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.05596579867858531, 0.08333333333333333, 'x[6] <= 116.5\\nsquared_error = 0.204\\nsamples = 7\\nvalue = 5.286'),\n",
|
|||
|
" Text(0.052856587640886125, 0.027777777777777776, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.059075009716284495, 0.027777777777777776, 'squared_error = 0.0\\nsamples = 5\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.046638165565487756, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.04974737660318694, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.04974737660318694, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.06218422075398368, 0.6388888888888888, 'x[6] <= 14.5\\nsquared_error = 0.122\\nsamples = 56\\nvalue = 5.054'),\n",
|
|||
|
" Text(0.059075009716284495, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.06529343179168286, 0.5833333333333334, 'x[10] <= 9.75\\nsquared_error = 0.104\\nsamples = 55\\nvalue = 5.073'),\n",
|
|||
|
" Text(0.059075009716284495, 0.5277777777777778, 'x[10] <= 9.025\\nsquared_error = 0.06\\nsamples = 50\\nvalue = 5.02'),\n",
|
|||
|
" Text(0.05596579867858531, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.06218422075398368, 0.4722222222222222, 'x[10] <= 9.075\\nsquared_error = 0.041\\nsamples = 49\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.059075009716284495, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.06529343179168286, 0.4166666666666667, 'x[8] <= 3.36\\nsquared_error = 0.02\\nsamples = 48\\nvalue = 5.021'),\n",
|
|||
|
" Text(0.06218422075398368, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 41\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.06840264282938205, 0.3611111111111111, 'x[5] <= 14.0\\nsquared_error = 0.122\\nsamples = 7\\nvalue = 5.143'),\n",
|
|||
|
" Text(0.06529343179168286, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.07151185386708123, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 6\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.07151185386708123, 0.5277777777777778, 'x[0] <= 7.45\\nsquared_error = 0.24\\nsamples = 5\\nvalue = 5.6'),\n",
|
|||
|
" Text(0.06840264282938205, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.07462106490478042, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.10027205596579868, 0.6944444444444444, 'x[2] <= 0.015\\nsquared_error = 0.405\\nsamples = 34\\nvalue = 5.647'),\n",
|
|||
|
" Text(0.0971628449280995, 0.6388888888888888, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.10338126700349787, 0.6388888888888888, 'x[1] <= 0.565\\nsquared_error = 0.309\\nsamples = 32\\nvalue = 5.562'),\n",
|
|||
|
" Text(0.0948309366498251, 0.5833333333333334, 'x[10] <= 10.45\\nsquared_error = 0.226\\nsamples = 29\\nvalue = 5.655'),\n",
|
|||
|
" Text(0.08705790905557714, 0.5277777777777778, 'x[3] <= 1.85\\nsquared_error = 0.166\\nsamples = 19\\nvalue = 5.789'),\n",
|
|||
|
" Text(0.08083948698017877, 0.4722222222222222, 'x[10] <= 10.35\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.0777302759424796, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.08394869801787797, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.09327633113097551, 0.4722222222222222, 'x[9] <= 0.535\\nsquared_error = 0.109\\nsamples = 16\\nvalue = 5.875'),\n",
|
|||
|
" Text(0.09016712009327633, 0.4166666666666667, 'x[1] <= 0.465\\nsquared_error = 0.222\\nsamples = 6\\nvalue = 5.667'),\n",
|
|||
|
" Text(0.08705790905557714, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.09327633113097551, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.0963855421686747, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 10\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.10260396424407307, 0.5277777777777778, 'x[8] <= 3.305\\nsquared_error = 0.24\\nsamples = 10\\nvalue = 5.4'),\n",
|
|||
|
" Text(0.09949475320637388, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 4\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.10571317528177225, 0.4722222222222222, 'x[4] <= 0.08\\nsquared_error = 0.222\\nsamples = 6\\nvalue = 5.667'),\n",
|
|||
|
" Text(0.10260396424407307, 0.4166666666666667, 'x[2] <= 0.485\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.09949475320637388, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.10571317528177225, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.10882238631947143, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.11193159735717062, 0.5833333333333334, 'x[5] <= 15.5\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 4.667'),\n",
|
|||
|
" Text(0.10882238631947143, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.1150408083948698, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.13044111931597357, 0.75, 'x[3] <= 1.25\\nsquared_error = 0.276\\nsamples = 174\\nvalue = 5.075'),\n",
|
|||
|
" Text(0.1273319082782744, 0.6944444444444444, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.13355033035367275, 0.6944444444444444, 'x[7] <= 0.994\\nsquared_error = 0.256\\nsamples = 173\\nvalue = 5.064'),\n",
|
|||
|
" Text(0.13044111931597357, 0.6388888888888888, 'squared_error = 0.0\\nsamples = 3\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.13665954139137193, 0.6388888888888888, 'x[5] <= 3.5\\nsquared_error = 0.24\\nsamples = 170\\nvalue = 5.082'),\n",
|
|||
|
" Text(0.12436844150796736, 0.5833333333333334, 'x[10] <= 10.25\\nsquared_error = 1.0\\nsamples = 2\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.12125923047026817, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 3.0'),\n",
|
|||
|
" Text(0.12747765254566654, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.14895064127477653, 0.5833333333333334, 'x[9] <= 0.495\\nsquared_error = 0.217\\nsamples = 168\\nvalue = 5.095'),\n",
|
|||
|
" Text(0.1336960746210649, 0.5277777777777778, 'x[0] <= 8.85\\nsquared_error = 0.126\\nsamples = 47\\nvalue = 4.957'),\n",
|
|||
|
" Text(0.12747765254566654, 0.4722222222222222, 'x[1] <= 0.752\\nsquared_error = 0.09\\nsamples = 40\\nvalue = 4.9'),\n",
|
|||
|
" Text(0.12436844150796736, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 25\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.13058686358336571, 0.4166666666666667, 'x[2] <= 0.265\\nsquared_error = 0.196\\nsamples = 15\\nvalue = 4.733'),\n",
|
|||
|
" Text(0.12747765254566654, 0.3611111111111111, 'x[2] <= 0.015\\nsquared_error = 0.13\\nsamples = 13\\nvalue = 4.846'),\n",
|
|||
|
" Text(0.12436844150796736, 0.3055555555555556, 'x[4] <= 0.095\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 4.333'),\n",
|
|||
|
" Text(0.12125923047026817, 0.25, 'squared_error = 0.0\\nsamples = 2\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.12747765254566654, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.13058686358336571, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 10\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.1336960746210649, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 2\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.13991449669646328, 0.4722222222222222, 'x[0] <= 9.1\\nsquared_error = 0.204\\nsamples = 7\\nvalue = 5.286'),\n",
|
|||
|
" Text(0.1368052856587641, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.14302370773416245, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 5\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.16420520792848814, 0.5277777777777778, 'x[4] <= 0.062\\nsquared_error = 0.242\\nsamples = 121\\nvalue = 5.149'),\n",
|
|||
|
" Text(0.15235134084726001, 0.4722222222222222, 'x[6] <= 30.0\\nsquared_error = 1.0\\nsamples = 2\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.14924212980956084, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.1554605518849592, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 3.0'),\n",
|
|||
|
" Text(0.1760590750097163, 0.4722222222222222, 'x[2] <= 0.23\\nsquared_error = 0.207\\nsamples = 119\\nvalue = 5.168'),\n",
|
|||
|
" Text(0.16167897396035755, 0.4166666666666667, 'x[8] <= 3.345\\nsquared_error = 0.186\\nsamples = 81\\nvalue = 5.247'),\n",
|
|||
|
" Text(0.1531286436066848, 0.3611111111111111, 'x[8] <= 3.305\\nsquared_error = 0.232\\nsamples = 41\\nvalue = 5.366'),\n",
|
|||
|
" Text(0.14535561601243685, 0.3055555555555556, 'x[8] <= 3.245\\nsquared_error = 0.175\\nsamples = 31\\nvalue = 5.226'),\n",
|
|||
|
" Text(0.14224640497473767, 0.25, 'x[0] <= 8.1\\nsquared_error = 0.249\\nsamples = 15\\nvalue = 5.467'),\n",
|
|||
|
" Text(0.1360279828993393, 0.19444444444444445, 'x[5] <= 10.0\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 5.833'),\n",
|
|||
|
" Text(0.1329187718616401, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.13913719393703847, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 5\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.14846482705013603, 0.19444444444444445, 'x[10] <= 9.8\\nsquared_error = 0.173\\nsamples = 9\\nvalue = 5.222'),\n",
|
|||
|
" Text(0.14535561601243685, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 7\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.1515740380878352, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.14846482705013603, 0.25, 'squared_error = 0.0\\nsamples = 16\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.16090167120093277, 0.3055555555555556, 'x[9] <= 0.535\\nsquared_error = 0.16\\nsamples = 10\\nvalue = 5.8'),\n",
|
|||
|
" Text(0.1577924601632336, 0.25, 'x[2] <= 0.02\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.15468324912553438, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.16090167120093277, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.16401088223863194, 0.25, 'squared_error = 0.0\\nsamples = 7\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.17022930431403033, 0.3611111111111111, 'x[1] <= 0.595\\nsquared_error = 0.109\\nsamples = 40\\nvalue = 5.125'),\n",
|
|||
|
" Text(0.16712009327633112, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.1733385153517295, 0.3055555555555556, 'x[10] <= 10.25\\nsquared_error = 0.073\\nsamples = 38\\nvalue = 5.079'),\n",
|
|||
|
" Text(0.17022930431403033, 0.25, 'x[3] <= 9.3\\nsquared_error = 0.051\\nsamples = 37\\nvalue = 5.054'),\n",
|
|||
|
" Text(0.16712009327633112, 0.19444444444444445, 'x[7] <= 0.998\\nsquared_error = 0.027\\nsamples = 36\\nvalue = 5.028'),\n",
|
|||
|
" Text(0.16401088223863194, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 33\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.17022930431403033, 0.1388888888888889, 'x[7] <= 0.999\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.16712009327633112, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.1733385153517295, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.1733385153517295, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.17644772638942868, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.190439176059075, 0.4166666666666667, 'x[6] <= 59.5\\nsquared_error = 0.211\\nsamples = 38\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.18266614846482704, 0.3611111111111111, 'x[5] <= 10.0\\nsquared_error = 0.247\\nsamples = 9\\nvalue = 4.556'),\n",
|
|||
|
" Text(0.17955693742712786, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 5\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.18577535950252624, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 4\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.19821220365332298, 0.3611111111111111, 'x[5] <= 17.5\\nsquared_error = 0.119\\nsamples = 29\\nvalue = 5.138'),\n",
|
|||
|
" Text(0.1919937815779246, 0.3055555555555556, 'x[6] <= 92.0\\nsquared_error = 0.25\\nsamples = 6\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.18888457054022542, 0.25, 'x[0] <= 8.2\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 5.75'),\n",
|
|||
|
" Text(0.18577535950252624, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.1919937815779246, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.19510299261562378, 0.25, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.20443062572872134, 0.3055555555555556, 'x[10] <= 10.05\\nsquared_error = 0.042\\nsamples = 23\\nvalue = 5.043'),\n",
|
|||
|
" Text(0.20132141469102216, 0.25, 'squared_error = 0.0\\nsamples = 21\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.20753983676642052, 0.25, 'x[5] <= 23.5\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.20443062572872134, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.2106490478041197, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.10777788573649437, 0.8055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 3.0'),\n",
|
|||
|
" Text(0.3250066799455888, 0.8611111111111112, 'x[1] <= 0.365\\nsquared_error = 0.451\\nsamples = 466\\nvalue = 5.517'),\n",
|
|||
|
" Text(0.19976680917217257, 0.8055555555555556, 'x[9] <= 0.65\\nsquared_error = 0.457\\nsamples = 72\\nvalue = 5.958'),\n",
|
|||
|
" Text(0.18266614846482704, 0.75, 'x[1] <= 0.355\\nsquared_error = 0.249\\nsamples = 17\\nvalue = 5.471'),\n",
|
|||
|
" Text(0.17955693742712786, 0.6944444444444444, 'x[8] <= 3.17\\nsquared_error = 0.213\\nsamples = 13\\nvalue = 5.308'),\n",
|
|||
|
" Text(0.17644772638942868, 0.6388888888888888, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.18266614846482704, 0.6388888888888888, 'x[1] <= 0.23\\nsquared_error = 0.149\\nsamples = 11\\nvalue = 5.182'),\n",
|
|||
|
" Text(0.17955693742712786, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.18577535950252624, 0.5833333333333334, 'x[5] <= 19.5\\nsquared_error = 0.09\\nsamples = 10\\nvalue = 5.1'),\n",
|
|||
|
" Text(0.18266614846482704, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 6\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.18888457054022542, 0.5277777777777778, 'x[10] <= 9.45\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 5.25'),\n",
|
|||
|
" Text(0.18577535950252624, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.1919937815779246, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.18577535950252624, 0.6944444444444444, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.21686746987951808, 0.75, 'x[10] <= 9.75\\nsquared_error = 0.424\\nsamples = 55\\nvalue = 6.109'),\n",
|
|||
|
" Text(0.20753983676642052, 0.6944444444444444, 'x[0] <= 14.65\\nsquared_error = 0.332\\nsamples = 24\\nvalue = 5.792'),\n",
|
|||
|
" Text(0.20443062572872134, 0.6388888888888888, 'x[10] <= 9.45\\nsquared_error = 0.217\\nsamples = 22\\nvalue = 5.682'),\n",
|
|||
|
" Text(0.19821220365332298, 0.5833333333333334, 'x[2] <= 0.395\\nsquared_error = 0.076\\nsamples = 12\\nvalue = 5.917'),\n",
|
|||
|
" Text(0.19510299261562378, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.20132141469102216, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 11\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.2106490478041197, 0.5833333333333334, 'x[1] <= 0.33\\nsquared_error = 0.24\\nsamples = 10\\nvalue = 5.4'),\n",
|
|||
|
" Text(0.20753983676642052, 0.5277777777777778, 'x[9] <= 0.74\\nsquared_error = 0.188\\nsamples = 8\\nvalue = 5.25'),\n",
|
|||
|
" Text(0.20443062572872134, 0.4722222222222222, 'x[4] <= 0.087\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.667'),\n",
|
|||
|
" Text(0.20132141469102216, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.20753983676642052, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.2106490478041197, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 5\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.2137582588418189, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.2106490478041197, 0.6388888888888888, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.22619510299261564, 0.6944444444444444, 'x[1] <= 0.245\\nsquared_error = 0.358\\nsamples = 31\\nvalue = 6.355'),\n",
|
|||
|
" Text(0.21997668091721725, 0.6388888888888888, 'x[10] <= 10.45\\nsquared_error = 0.109\\nsamples = 8\\nvalue = 5.875'),\n",
|
|||
|
" Text(0.21686746987951808, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 7\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.22308589195491643, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.232413525068014, 0.6388888888888888, 'x[5] <= 4.0\\nsquared_error = 0.336\\nsamples = 23\\nvalue = 6.522'),\n",
|
|||
|
" Text(0.22930431403031482, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.23552273610571317, 0.5833333333333334, 'x[2] <= 0.515\\nsquared_error = 0.248\\nsamples = 22\\nvalue = 6.455'),\n",
|
|||
|
" Text(0.22930431403031482, 0.5277777777777778, 'x[7] <= 0.998\\nsquared_error = 0.215\\nsamples = 16\\nvalue = 6.312'),\n",
|
|||
|
" Text(0.22619510299261564, 0.4722222222222222, 'x[7] <= 0.998\\nsquared_error = 0.248\\nsamples = 11\\nvalue = 6.455'),\n",
|
|||
|
" Text(0.22308589195491643, 0.4166666666666667, 'x[3] <= 1.5\\nsquared_error = 0.188\\nsamples = 8\\nvalue = 6.25'),\n",
|
|||
|
" Text(0.21997668091721725, 0.3611111111111111, 'x[1] <= 0.315\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 6.667'),\n",
|
|||
|
" Text(0.21686746987951808, 0.3055555555555556, 'x[8] <= 3.39\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 6.5'),\n",
|
|||
|
" Text(0.2137582588418189, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.21997668091721725, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.22308589195491643, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.22619510299261564, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 5\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.22930431403031482, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 3\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.232413525068014, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 5\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.24174115818111155, 0.5277777777777778, 'x[7] <= 0.998\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 6.833'),\n",
|
|||
|
" Text(0.23863194714341235, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 4\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.24485036921881073, 0.4722222222222222, 'x[4] <= 0.075\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 6.5'),\n",
|
|||
|
" Text(0.24174115818111155, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.2479595802565099, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.45024655071900505, 0.8055555555555556, 'x[6] <= 55.5\\nsquared_error = 0.408\\nsamples = 394\\nvalue = 5.437'),\n",
|
|||
|
" Text(0.4111810143801011, 0.75, 'x[8] <= 3.535\\nsquared_error = 0.463\\nsamples = 249\\nvalue = 5.558'),\n",
|
|||
|
" Text(0.3800767586474932, 0.6944444444444444, 'x[5] <= 33.0\\nsquared_error = 0.43\\nsamples = 227\\nvalue = 5.617'),\n",
|
|||
|
" Text(0.33963272444617176, 0.6388888888888888, 'x[9] <= 0.685\\nsquared_error = 0.393\\nsamples = 222\\nvalue = 5.64'),\n",
|
|||
|
" Text(0.2921686746987952, 0.5833333333333334, 'x[3] <= 1.85\\nsquared_error = 0.348\\nsamples = 142\\nvalue = 5.528'),\n",
|
|||
|
" Text(0.2635056354450058, 0.5277777777777778, 'x[4] <= 0.083\\nsquared_error = 0.227\\nsamples = 30\\nvalue = 5.2'),\n",
|
|||
|
" Text(0.25728721336960747, 0.4722222222222222, 'x[7] <= 0.998\\nsquared_error = 0.141\\nsamples = 21\\nvalue = 5.048'),\n",
|
|||
|
" Text(0.2541780023319083, 0.4166666666666667, 'x[7] <= 0.996\\nsquared_error = 0.09\\nsamples = 20\\nvalue = 5.1'),\n",
|
|||
|
" Text(0.2510687912942091, 0.3611111111111111, 'x[10] <= 9.65\\nsquared_error = 0.24\\nsamples = 5\\nvalue = 5.4'),\n",
|
|||
|
" Text(0.2479595802565099, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.2541780023319083, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.25728721336960747, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 15\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.26039642440730665, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.2697240575204042, 0.4722222222222222, 'x[4] <= 0.094\\nsquared_error = 0.247\\nsamples = 9\\nvalue = 5.556'),\n",
|
|||
|
" Text(0.266614846482705, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 5\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.27283326855810336, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 4\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.32083171395258453, 0.5277777777777778, 'x[3] <= 2.65\\nsquared_error = 0.344\\nsamples = 112\\nvalue = 5.616'),\n",
|
|||
|
" Text(0.29731830547998445, 0.4722222222222222, 'x[4] <= 0.076\\nsquared_error = 0.349\\nsamples = 94\\nvalue = 5.67'),\n",
|
|||
|
" Text(0.27905169063350177, 0.4166666666666667, 'x[5] <= 26.5\\nsquared_error = 0.358\\nsamples = 37\\nvalue = 5.514'),\n",
|
|||
|
" Text(0.2759424795958026, 0.3611111111111111, 'x[6] <= 25.5\\nsquared_error = 0.245\\nsamples = 35\\nvalue = 5.429'),\n",
|
|||
|
" Text(0.26506024096385544, 0.3055555555555556, 'x[10] <= 9.25\\nsquared_error = 0.18\\nsamples = 17\\nvalue = 5.765'),\n",
|
|||
|
" Text(0.25884181888845703, 0.25, 'x[1] <= 0.46\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.25573260785075785, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.26195102992615626, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.2712786630392538, 0.25, 'x[7] <= 0.996\\nsquared_error = 0.122\\nsamples = 14\\nvalue = 5.857'),\n",
|
|||
|
" Text(0.2681694520015546, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.274387874076953, 0.19444444444444445, 'x[9] <= 0.625\\nsquared_error = 0.071\\nsamples = 13\\nvalue = 5.923'),\n",
|
|||
|
" Text(0.2712786630392538, 0.1388888888888889, 'x[8] <= 3.15\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.667'),\n",
|
|||
|
" Text(0.2681694520015546, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.274387874076953, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.27749708511465215, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 10\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.2868247182277497, 0.3055555555555556, 'x[2] <= 0.135\\nsquared_error = 0.099\\nsamples = 18\\nvalue = 5.111'),\n",
|
|||
|
" Text(0.2837155071900505, 0.25, 'x[3] <= 2.15\\nsquared_error = 0.24\\nsamples = 5\\nvalue = 5.4'),\n",
|
|||
|
" Text(0.28060629615235133, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.2868247182277497, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.2899339292654489, 0.25, 'squared_error = 0.0\\nsamples = 13\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.28216090167120095, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.3155849203264672, 0.4166666666666667, 'x[10] <= 10.45\\nsquared_error = 0.316\\nsamples = 57\\nvalue = 5.772'),\n",
|
|||
|
" Text(0.312475709288768, 0.3611111111111111, 'x[7] <= 0.997\\nsquared_error = 0.299\\nsamples = 54\\nvalue = 5.815'),\n",
|
|||
|
" Text(0.29926156237854645, 0.3055555555555556, 'x[8] <= 3.475\\nsquared_error = 0.094\\nsamples = 19\\nvalue = 6.105'),\n",
|
|||
|
" Text(0.2961523513408473, 0.25, 'x[7] <= 0.997\\nsquared_error = 0.052\\nsamples = 18\\nvalue = 6.056'),\n",
|
|||
|
" Text(0.2930431403031481, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 15\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.29926156237854645, 0.19444444444444445, 'x[6] <= 37.5\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 6.333'),\n",
|
|||
|
" Text(0.2961523513408473, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.30237077341624563, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.30237077341624563, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.3256898561989895, 0.3055555555555556, 'x[5] <= 14.5\\nsquared_error = 0.34\\nsamples = 35\\nvalue = 5.657'),\n",
|
|||
|
" Text(0.3225806451612903, 0.25, 'x[0] <= 9.7\\nsquared_error = 0.302\\nsamples = 29\\nvalue = 5.793'),\n",
|
|||
|
" Text(0.31480761756704234, 0.19444444444444445, 'x[8] <= 3.265\\nsquared_error = 0.231\\nsamples = 22\\nvalue = 5.636'),\n",
|
|||
|
" Text(0.308589195491644, 0.1388888888888889, 'x[0] <= 7.75\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 5.167'),\n",
|
|||
|
" Text(0.3054799844539448, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.31169840652934316, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 5\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.32102603964244075, 0.1388888888888889, 'x[2] <= 0.33\\nsquared_error = 0.152\\nsamples = 16\\nvalue = 5.812'),\n",
|
|||
|
" Text(0.3179168286047415, 0.08333333333333333, 'x[2] <= 0.085\\nsquared_error = 0.066\\nsamples = 14\\nvalue = 5.929'),\n",
|
|||
|
" Text(0.31480761756704234, 0.027777777777777776, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.32102603964244075, 0.027777777777777776, 'squared_error = 0.0\\nsamples = 13\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.32413525068013993, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.3303536727555383, 0.19444444444444445, 'x[6] <= 43.0\\nsquared_error = 0.204\\nsamples = 7\\nvalue = 6.286'),\n",
|
|||
|
" Text(0.3272444617178391, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 5\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.33346288379323746, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.32879906723668867, 0.25, 'squared_error = 0.0\\nsamples = 6\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.31869413136416636, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.3443451224251846, 0.4722222222222222, 'x[10] <= 10.35\\nsquared_error = 0.222\\nsamples = 18\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.33812670034978626, 0.4166666666666667, 'x[3] <= 7.45\\nsquared_error = 0.13\\nsamples = 13\\nvalue = 5.154'),\n",
|
|||
|
" Text(0.3350174893120871, 0.3611111111111111, 'x[7] <= 0.999\\nsquared_error = 0.076\\nsamples = 12\\nvalue = 5.083'),\n",
|
|||
|
" Text(0.33190827827438785, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 8\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.33812670034978626, 0.3055555555555556, 'x[4] <= 0.094\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 5.25'),\n",
|
|||
|
" Text(0.3350174893120871, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.34123591138748544, 0.25, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.34123591138748544, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.35056354450058297, 0.4166666666666667, 'x[3] <= 3.3\\nsquared_error = 0.16\\nsamples = 5\\nvalue = 5.8'),\n",
|
|||
|
" Text(0.3474543334628838, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.35367275553828215, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.3870967741935484, 0.5833333333333334, 'x[10] <= 9.85\\nsquared_error = 0.411\\nsamples = 80\\nvalue = 5.838'),\n",
|
|||
|
" Text(0.3692188107267781, 0.5277777777777778, 'x[7] <= 0.997\\nsquared_error = 0.287\\nsamples = 44\\nvalue = 5.591'),\n",
|
|||
|
" Text(0.3598911776136805, 0.4722222222222222, 'x[1] <= 0.385\\nsquared_error = 0.312\\nsamples = 16\\nvalue = 5.25'),\n",
|
|||
|
" Text(0.3567819665759813, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.36300038865137974, 0.4166666666666667, 'x[10] <= 9.15\\nsquared_error = 0.116\\nsamples = 15\\nvalue = 5.133'),\n",
|
|||
|
" Text(0.3598911776136805, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.3661095996890789, 0.3611111111111111, 'x[8] <= 3.41\\nsquared_error = 0.066\\nsamples = 14\\nvalue = 5.071'),\n",
|
|||
|
" Text(0.36300038865137974, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 13\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.3692188107267781, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.3785464438398756, 0.4722222222222222, 'x[10] <= 9.45\\nsquared_error = 0.168\\nsamples = 28\\nvalue = 5.786'),\n",
|
|||
|
" Text(0.37543723280217645, 0.4166666666666667, 'x[7] <= 0.998\\nsquared_error = 0.24\\nsamples = 15\\nvalue = 5.6'),\n",
|
|||
|
" Text(0.37232802176447727, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.3785464438398756, 0.3611111111111111, 'x[2] <= 0.27\\nsquared_error = 0.188\\nsamples = 12\\nvalue = 5.75'),\n",
|
|||
|
" Text(0.37543723280217645, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 6\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.3816556548775748, 0.3055555555555556, 'x[8] <= 3.075\\nsquared_error = 0.25\\nsamples = 6\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.3785464438398756, 0.25, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.384764865915274, 0.25, 'x[6] <= 54.5\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 5.25'),\n",
|
|||
|
" Text(0.3816556548775748, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.38787407695297316, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.3816556548775748, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 13\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4049747376603187, 0.5277777777777778, 'x[3] <= 3.05\\nsquared_error = 0.397\\nsamples = 36\\nvalue = 6.139'),\n",
|
|||
|
" Text(0.39720171006607075, 0.4722222222222222, 'x[1] <= 0.412\\nsquared_error = 0.333\\nsamples = 30\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.3909832879906724, 0.4166666666666667, 'x[10] <= 10.15\\nsquared_error = 0.25\\nsamples = 8\\nvalue = 6.5'),\n",
|
|||
|
" Text(0.38787407695297316, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 4\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.39409249902837157, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4034201321414691, 0.4166666666666667, 'x[5] <= 3.5\\nsquared_error = 0.24\\nsamples = 22\\nvalue = 5.818'),\n",
|
|||
|
" Text(0.4003109211037699, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.4065293431791683, 0.3611111111111111, 'x[2] <= 0.465\\nsquared_error = 0.181\\nsamples = 21\\nvalue = 5.762'),\n",
|
|||
|
" Text(0.4003109211037699, 0.3055555555555556, 'x[9] <= 1.09\\nsquared_error = 0.109\\nsamples = 16\\nvalue = 5.875'),\n",
|
|||
|
" Text(0.39720171006607075, 0.25, 'x[8] <= 3.49\\nsquared_error = 0.062\\nsamples = 15\\nvalue = 5.933'),\n",
|
|||
|
" Text(0.39409249902837157, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 14\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4003109211037699, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4034201321414691, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.41274776525456663, 0.3055555555555556, 'x[1] <= 0.455\\nsquared_error = 0.24\\nsamples = 5\\nvalue = 5.4'),\n",
|
|||
|
" Text(0.40963855421686746, 0.25, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4158569762922658, 0.25, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.41274776525456663, 0.4722222222222222, 'x[5] <= 16.0\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 6.833'),\n",
|
|||
|
" Text(0.40963855421686746, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 5\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.4158569762922658, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4205207928488146, 0.6388888888888888, 'x[2] <= 0.25\\nsquared_error = 1.04\\nsamples = 5\\nvalue = 4.6'),\n",
|
|||
|
" Text(0.41430237077341625, 0.5833333333333334, 'x[5] <= 41.0\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.4111931597357171, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.41741158181111543, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.42673921492421296, 0.5833333333333334, 'x[4] <= 0.146\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 3.5'),\n",
|
|||
|
" Text(0.4236300038865138, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 3.0'),\n",
|
|||
|
" Text(0.42984842596191214, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.4422852701127089, 0.6944444444444444, 'x[9] <= 0.635\\nsquared_error = 0.407\\nsamples = 22\\nvalue = 4.955'),\n",
|
|||
|
" Text(0.43606684803731055, 0.6388888888888888, 'x[10] <= 9.975\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 3.667'),\n",
|
|||
|
" Text(0.4329576369996114, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 3.0'),\n",
|
|||
|
" Text(0.43917605907500973, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 2\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.44850369218810726, 0.6388888888888888, 'x[9] <= 0.875\\nsquared_error = 0.133\\nsamples = 19\\nvalue = 5.158'),\n",
|
|||
|
" Text(0.4453944811504081, 0.5833333333333334, 'x[7] <= 0.995\\nsquared_error = 0.055\\nsamples = 17\\nvalue = 5.059'),\n",
|
|||
|
" Text(0.4422852701127089, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.44850369218810726, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 16\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.45161290322580644, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4893120870579091, 0.75, 'x[6] <= 105.5\\nsquared_error = 0.245\\nsamples = 145\\nvalue = 5.228'),\n",
|
|||
|
" Text(0.4760979401476875, 0.6944444444444444, 'x[10] <= 10.35\\nsquared_error = 0.286\\nsamples = 106\\nvalue = 5.302'),\n",
|
|||
|
" Text(0.46832491255343955, 0.6388888888888888, 'x[1] <= 0.855\\nsquared_error = 0.27\\nsamples = 94\\nvalue = 5.245'),\n",
|
|||
|
" Text(0.4621064904780412, 0.5833333333333334, 'x[4] <= 0.539\\nsquared_error = 0.245\\nsamples = 90\\nvalue = 5.278'),\n",
|
|||
|
" Text(0.458997279440342, 0.5277777777777778, 'x[5] <= 18.5\\nsquared_error = 0.229\\nsamples = 89\\nvalue = 5.292'),\n",
|
|||
|
" Text(0.4407306645938593, 0.4722222222222222, 'x[9] <= 0.75\\nsquared_error = 0.245\\nsamples = 35\\nvalue = 5.429'),\n",
|
|||
|
" Text(0.43451224251846093, 0.4166666666666667, 'x[6] <= 91.5\\nsquared_error = 0.248\\nsamples = 24\\nvalue = 5.542'),\n",
|
|||
|
" Text(0.43140303148076176, 0.3611111111111111, 'x[5] <= 13.0\\nsquared_error = 0.227\\nsamples = 20\\nvalue = 5.65'),\n",
|
|||
|
" Text(0.4251846094053634, 0.3055555555555556, 'x[3] <= 2.05\\nsquared_error = 0.234\\nsamples = 8\\nvalue = 5.375'),\n",
|
|||
|
" Text(0.4220753983676642, 0.25, 'x[5] <= 10.5\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 5.75'),\n",
|
|||
|
" Text(0.41896618732996505, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4251846094053634, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4282938204430626, 0.25, 'squared_error = 0.0\\nsamples = 4\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4376214535561601, 0.3055555555555556, 'x[3] <= 1.7\\nsquared_error = 0.139\\nsamples = 12\\nvalue = 5.833'),\n",
|
|||
|
" Text(0.43451224251846093, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4407306645938593, 0.25, 'x[8] <= 3.54\\nsquared_error = 0.083\\nsamples = 11\\nvalue = 5.909'),\n",
|
|||
|
" Text(0.4376214535561601, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 10\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.44383987563155847, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4376214535561601, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 4\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4469490866692577, 0.4166666666666667, 'x[8] <= 2.95\\nsquared_error = 0.149\\nsamples = 11\\nvalue = 5.182'),\n",
|
|||
|
" Text(0.44383987563155847, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4500582977069569, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 9\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4772638942868247, 0.4722222222222222, 'x[10] <= 9.55\\nsquared_error = 0.199\\nsamples = 54\\nvalue = 5.204'),\n",
|
|||
|
" Text(0.4640497473766032, 0.4166666666666667, 'x[10] <= 9.45\\nsquared_error = 0.226\\nsamples = 32\\nvalue = 5.344'),\n",
|
|||
|
" Text(0.45627671978235523, 0.3611111111111111, 'x[7] <= 1.003\\nsquared_error = 0.094\\nsamples = 19\\nvalue = 5.105'),\n",
|
|||
|
" Text(0.45316750874465606, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 17\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4593859308200544, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4718227749708511, 0.3611111111111111, 'x[4] <= 0.076\\nsquared_error = 0.213\\nsamples = 13\\nvalue = 5.692'),\n",
|
|||
|
" Text(0.46560435289545277, 0.3055555555555556, 'x[1] <= 0.405\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 5.25'),\n",
|
|||
|
" Text(0.4624951418577536, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.46871356393315194, 0.25, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.47804119704624953, 0.3055555555555556, 'x[0] <= 9.05\\nsquared_error = 0.099\\nsamples = 9\\nvalue = 5.889'),\n",
|
|||
|
" Text(0.47493198600855036, 0.25, 'squared_error = 0.0\\nsamples = 7\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4811504080839487, 0.25, 'x[1] <= 0.52\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.47804119704624953, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4842596191216479, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.49047804119704624, 0.4166666666666667, 'x[2] <= 0.435\\nsquared_error = 0.091\\nsamples = 22\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.48736883015934707, 0.3611111111111111, 'x[0] <= 9.95\\nsquared_error = 0.045\\nsamples = 21\\nvalue = 5.048'),\n",
|
|||
|
" Text(0.4842596191216479, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 19\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.49047804119704624, 0.3055555555555556, 'x[8] <= 3.2\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.48736883015934707, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4935872522347454, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.4935872522347454, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.4652157015157404, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.4745433346288379, 0.5833333333333334, 'x[8] <= 3.285\\nsquared_error = 0.25\\nsamples = 4\\nvalue = 4.5'),\n",
|
|||
|
" Text(0.47143412359113873, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.47765254566653714, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 2\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.4838709677419355, 0.6388888888888888, 'x[3] <= 5.5\\nsquared_error = 0.188\\nsamples = 12\\nvalue = 5.75'),\n",
|
|||
|
" Text(0.4807617567042363, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 9\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4869801787796347, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5025262339681306, 0.6944444444444444, 'x[8] <= 2.985\\nsquared_error = 0.076\\nsamples = 39\\nvalue = 5.026'),\n",
|
|||
|
" Text(0.4963078118927322, 0.6388888888888888, 'x[3] <= 1.95\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.667'),\n",
|
|||
|
" Text(0.49319860085503303, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.4994170229304314, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5087446560435289, 0.6388888888888888, 'x[3] <= 1.65\\nsquared_error = 0.027\\nsamples = 36\\nvalue = 4.972'),\n",
|
|||
|
" Text(0.5056354450058298, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.5118538670812282, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 35\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.7811771278663039, 0.9166666666666666, 'x[9] <= 0.645\\nsquared_error = 0.741\\nsamples = 490\\nvalue = 6.088'),\n",
|
|||
|
" Text(0.6395922652302759, 0.9444444444444444, ' False'),\n",
|
|||
|
" Text(0.6822046249514185, 0.8611111111111112, 'x[1] <= 1.015\\nsquared_error = 0.726\\nsamples = 215\\nvalue = 5.712'),\n",
|
|||
|
" Text(0.6318013991449669, 0.8055555555555556, 'x[10] <= 11.45\\nsquared_error = 0.583\\nsamples = 206\\nvalue = 5.791'),\n",
|
|||
|
" Text(0.5764671589584143, 0.75, 'x[1] <= 0.635\\nsquared_error = 0.527\\nsamples = 108\\nvalue = 5.528'),\n",
|
|||
|
" Text(0.5524679362611737, 0.6944444444444444, 'x[8] <= 3.475\\nsquared_error = 0.439\\nsamples = 70\\nvalue = 5.7'),\n",
|
|||
|
" Text(0.5378935095219588, 0.6388888888888888, 'x[4] <= 0.067\\nsquared_error = 0.427\\nsamples = 60\\nvalue = 5.8'),\n",
|
|||
|
" Text(0.5180722891566265, 0.5833333333333334, 'x[4] <= 0.059\\nsquared_error = 0.61\\nsamples = 10\\nvalue = 6.3'),\n",
|
|||
|
" Text(0.5118538670812282, 0.5277777777777778, 'x[9] <= 0.53\\nsquared_error = 0.25\\nsamples = 4\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.5087446560435289, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.5149630781189273, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5242907112320249, 0.5277777777777778, 'x[8] <= 3.43\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 6.833'),\n",
|
|||
|
" Text(0.5211815001943257, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 5\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.5273999222697241, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.5577147298872911, 0.5833333333333334, 'x[9] <= 0.585\\nsquared_error = 0.33\\nsamples = 50\\nvalue = 5.7'),\n",
|
|||
|
" Text(0.5445005829770696, 0.5277777777777778, 'x[10] <= 11.05\\nsquared_error = 0.402\\nsamples = 26\\nvalue = 5.462'),\n",
|
|||
|
" Text(0.5336183443451225, 0.4722222222222222, 'x[10] <= 10.85\\nsquared_error = 0.277\\nsamples = 16\\nvalue = 5.188'),\n",
|
|||
|
" Text(0.5273999222697241, 0.4166666666666667, 'x[9] <= 0.525\\nsquared_error = 0.245\\nsamples = 7\\nvalue = 5.571'),\n",
|
|||
|
" Text(0.5242907112320249, 0.3611111111111111, 'x[0] <= 8.25\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 5.25'),\n",
|
|||
|
" Text(0.5211815001943257, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5273999222697241, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.5305091333074232, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.5398367664205208, 0.4166666666666667, 'x[2] <= 0.04\\nsquared_error = 0.099\\nsamples = 9\\nvalue = 4.889'),\n",
|
|||
|
" Text(0.5367275553828216, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.5429459774582199, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 8\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5553828216090168, 0.4722222222222222, 'x[0] <= 9.45\\nsquared_error = 0.29\\nsamples = 10\\nvalue = 5.9'),\n",
|
|||
|
" Text(0.5522736105713175, 0.4166666666666667, 'x[9] <= 0.575\\nsquared_error = 0.109\\nsamples = 8\\nvalue = 6.125'),\n",
|
|||
|
" Text(0.5491643995336184, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 7\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.5553828216090168, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.5584920326467159, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5709288767975126, 0.5277777777777778, 'x[3] <= 2.9\\nsquared_error = 0.123\\nsamples = 24\\nvalue = 5.958'),\n",
|
|||
|
" Text(0.5678196657598135, 0.4722222222222222, 'x[1] <= 0.34\\nsquared_error = 0.079\\nsamples = 23\\nvalue = 5.913'),\n",
|
|||
|
" Text(0.5647104547221142, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5709288767975126, 0.4166666666666667, 'x[1] <= 0.61\\nsquared_error = 0.043\\nsamples = 22\\nvalue = 5.955'),\n",
|
|||
|
" Text(0.5678196657598135, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 20\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.5740380878352118, 0.3611111111111111, 'x[8] <= 3.375\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.5709288767975126, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.577147298872911, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.5740380878352118, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.5670423630003887, 0.6388888888888888, 'x[7] <= 0.996\\nsquared_error = 0.09\\nsamples = 10\\nvalue = 5.1'),\n",
|
|||
|
" Text(0.5639331519626894, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 9\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5701515740380878, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6004663816556549, 0.6944444444444444, 'x[5] <= 6.5\\nsquared_error = 0.535\\nsamples = 38\\nvalue = 5.211'),\n",
|
|||
|
" Text(0.5864749319860085, 0.6388888888888888, 'x[1] <= 0.81\\nsquared_error = 0.222\\nsamples = 12\\nvalue = 4.667'),\n",
|
|||
|
" Text(0.5802565099106102, 0.5833333333333334, 'x[6] <= 10.0\\nsquared_error = 0.109\\nsamples = 8\\nvalue = 4.875'),\n",
|
|||
|
" Text(0.577147298872911, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.5833657209483094, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 7\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5926933540614069, 0.5833333333333334, 'x[7] <= 0.996\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 4.25'),\n",
|
|||
|
" Text(0.5895841430237078, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.5958025650991061, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 3\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.6144578313253012, 0.6388888888888888, 'x[6] <= 45.5\\nsquared_error = 0.479\\nsamples = 26\\nvalue = 5.462'),\n",
|
|||
|
" Text(0.6051301982122037, 0.5833333333333334, 'x[2] <= 0.08\\nsquared_error = 0.312\\nsamples = 16\\nvalue = 5.75'),\n",
|
|||
|
" Text(0.6020209871745045, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 11\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6082394092499028, 0.5277777777777778, 'x[9] <= 0.505\\nsquared_error = 0.56\\nsamples = 5\\nvalue = 5.2'),\n",
|
|||
|
" Text(0.6051301982122037, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6113486202876021, 0.4722222222222222, 'x[7] <= 0.996\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 4.667'),\n",
|
|||
|
" Text(0.6082394092499028, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.6144578313253012, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.6237854644383988, 0.5833333333333334, 'x[3] <= 3.0\\nsquared_error = 0.4\\nsamples = 10\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.6206762534006995, 0.5277777777777778, 'x[8] <= 3.48\\nsquared_error = 0.188\\nsamples = 8\\nvalue = 5.25'),\n",
|
|||
|
" Text(0.6175670423630004, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 5\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.6237854644383988, 0.4722222222222222, 'x[5] <= 13.0\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.667'),\n",
|
|||
|
" Text(0.6206762534006995, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.6268946754760979, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6268946754760979, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 2\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.6871356393315197, 0.75, 'x[1] <= 0.485\\nsquared_error = 0.483\\nsamples = 98\\nvalue = 6.082'),\n",
|
|||
|
" Text(0.6634279051690634, 0.6944444444444444, 'x[8] <= 3.275\\nsquared_error = 0.436\\nsamples = 50\\nvalue = 6.38'),\n",
|
|||
|
" Text(0.6502137582588419, 0.6388888888888888, 'x[0] <= 10.1\\nsquared_error = 0.38\\nsamples = 29\\nvalue = 6.586'),\n",
|
|||
|
" Text(0.6393315196268947, 0.5833333333333334, 'x[1] <= 0.245\\nsquared_error = 0.28\\nsamples = 23\\nvalue = 6.739'),\n",
|
|||
|
" Text(0.6362223085891955, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6424407306645938, 0.5277777777777778, 'x[1] <= 0.32\\nsquared_error = 0.228\\nsamples = 20\\nvalue = 6.85'),\n",
|
|||
|
" Text(0.6362223085891955, 0.4722222222222222, 'x[0] <= 9.95\\nsquared_error = 0.076\\nsamples = 12\\nvalue = 7.083'),\n",
|
|||
|
" Text(0.6331130975514964, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 11\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.6393315196268947, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.6486591527399922, 0.4722222222222222, 'x[1] <= 0.4\\nsquared_error = 0.25\\nsamples = 8\\nvalue = 6.5'),\n",
|
|||
|
" Text(0.6455499417022931, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6517683637776914, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 4\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.661095996890789, 0.5833333333333334, 'x[2] <= 0.72\\nsquared_error = 0.333\\nsamples = 6\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6579867858530898, 0.5277777777777778, 'x[1] <= 0.265\\nsquared_error = 0.16\\nsamples = 5\\nvalue = 5.8'),\n",
|
|||
|
" Text(0.6548775748153906, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.661095996890789, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6642052079284881, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.6766420520792849, 0.6388888888888888, 'x[3] <= 6.1\\nsquared_error = 0.372\\nsamples = 21\\nvalue = 6.095'),\n",
|
|||
|
" Text(0.6735328410415857, 0.5833333333333334, 'x[0] <= 5.8\\nsquared_error = 0.16\\nsamples = 20\\nvalue = 6.2'),\n",
|
|||
|
" Text(0.6704236300038865, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.6766420520792849, 0.5277777777777778, 'x[3] <= 5.25\\nsquared_error = 0.099\\nsamples = 18\\nvalue = 6.111'),\n",
|
|||
|
" Text(0.6735328410415857, 0.4722222222222222, 'x[6] <= 9.5\\nsquared_error = 0.055\\nsamples = 17\\nvalue = 6.059'),\n",
|
|||
|
" Text(0.6704236300038865, 0.4166666666666667, 'x[4] <= 0.066\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 6.5'),\n",
|
|||
|
" Text(0.6673144189661874, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6735328410415857, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.6766420520792849, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 15\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.6797512631169841, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.6797512631169841, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.7108433734939759, 0.6944444444444444, 'x[4] <= 0.058\\nsquared_error = 0.343\\nsamples = 48\\nvalue = 5.771'),\n",
|
|||
|
" Text(0.6984065293431791, 0.6388888888888888, 'x[1] <= 0.68\\nsquared_error = 0.373\\nsamples = 15\\nvalue = 5.4'),\n",
|
|||
|
" Text(0.6921881072677808, 0.5833333333333334, 'x[6] <= 102.5\\nsquared_error = 0.25\\nsamples = 8\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.6890788962300817, 0.5277777777777778, 'x[2] <= 0.03\\nsquared_error = 0.122\\nsamples = 7\\nvalue = 4.857'),\n",
|
|||
|
" Text(0.6859696851923824, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.6921881072677808, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 6\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.69529731830548, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7046249514185775, 0.5833333333333334, 'x[3] <= 2.45\\nsquared_error = 0.122\\nsamples = 7\\nvalue = 5.857'),\n",
|
|||
|
" Text(0.7015157403808784, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 6\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7077341624562767, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.7232802176447727, 0.6388888888888888, 'x[10] <= 12.85\\nsquared_error = 0.239\\nsamples = 33\\nvalue = 5.939'),\n",
|
|||
|
" Text(0.7201710066070734, 0.5833333333333334, 'x[9] <= 0.525\\nsquared_error = 0.194\\nsamples = 31\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7139525845316751, 0.5277777777777778, 'x[9] <= 0.515\\nsquared_error = 0.25\\nsamples = 6\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.7108433734939759, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7170617955693742, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 3\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.7263894286824718, 0.5277777777777778, 'x[4] <= 0.059\\nsquared_error = 0.106\\nsamples = 25\\nvalue = 6.12'),\n",
|
|||
|
" Text(0.7232802176447727, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.729498639720171, 0.4722222222222222, 'x[5] <= 4.0\\nsquared_error = 0.076\\nsamples = 24\\nvalue = 6.083'),\n",
|
|||
|
" Text(0.7263894286824718, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.7326078507578702, 0.4166666666666667, 'x[4] <= 0.091\\nsquared_error = 0.042\\nsamples = 23\\nvalue = 6.043'),\n",
|
|||
|
" Text(0.729498639720171, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 20\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7357170617955694, 0.3611111111111111, 'x[6] <= 15.5\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 6.333'),\n",
|
|||
|
" Text(0.7326078507578702, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.7388262728332685, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7263894286824718, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.7326078507578702, 0.8055555555555556, 'x[3] <= 1.9\\nsquared_error = 0.543\\nsamples = 9\\nvalue = 3.889'),\n",
|
|||
|
" Text(0.729498639720171, 0.75, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.7357170617955694, 0.75, 'x[2] <= 0.04\\nsquared_error = 0.245\\nsamples = 7\\nvalue = 3.571'),\n",
|
|||
|
" Text(0.7326078507578702, 0.6944444444444444, 'x[0] <= 6.85\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 3.25'),\n",
|
|||
|
" Text(0.729498639720171, 0.6388888888888888, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.7357170617955694, 0.6388888888888888, 'squared_error = 0.0\\nsamples = 3\\nvalue = 3.0'),\n",
|
|||
|
" Text(0.7388262728332685, 0.6944444444444444, 'squared_error = 0.0\\nsamples = 3\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.8801496307811892, 0.8611111111111112, 'x[10] <= 11.55\\nsquared_error = 0.556\\nsamples = 275\\nvalue = 6.382'),\n",
|
|||
|
" Text(0.8251068791294209, 0.8055555555555556, 'x[1] <= 0.395\\nsquared_error = 0.559\\nsamples = 158\\nvalue = 6.171'),\n",
|
|||
|
" Text(0.7784687135639331, 0.75, 'x[8] <= 3.255\\nsquared_error = 0.605\\nsamples = 73\\nvalue = 6.466'),\n",
|
|||
|
" Text(0.7481539059463661, 0.6944444444444444, 'x[9] <= 0.705\\nsquared_error = 0.37\\nsamples = 31\\nvalue = 6.871'),\n",
|
|||
|
" Text(0.7419354838709677, 0.6388888888888888, 'x[4] <= 0.079\\nsquared_error = 0.25\\nsamples = 6\\nvalue = 7.5'),\n",
|
|||
|
" Text(0.7388262728332685, 0.5833333333333334, 'x[10] <= 10.8\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 7.75'),\n",
|
|||
|
" Text(0.7357170617955694, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.7419354838709677, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 3\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.7450446949086669, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.7543723280217645, 0.6388888888888888, 'x[7] <= 0.995\\nsquared_error = 0.282\\nsamples = 25\\nvalue = 6.72'),\n",
|
|||
|
" Text(0.7512631169840653, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.7574815390594637, 0.5833333333333334, 'x[2] <= 0.345\\nsquared_error = 0.222\\nsamples = 24\\nvalue = 6.667'),\n",
|
|||
|
" Text(0.7543723280217645, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7605907500971628, 0.5277777777777778, 'x[1] <= 0.375\\nsquared_error = 0.181\\nsamples = 21\\nvalue = 6.762'),\n",
|
|||
|
" Text(0.7574815390594637, 0.4722222222222222, 'x[10] <= 11.3\\nsquared_error = 0.133\\nsamples = 19\\nvalue = 6.842'),\n",
|
|||
|
" Text(0.7543723280217645, 0.4166666666666667, 'x[5] <= 23.5\\nsquared_error = 0.099\\nsamples = 18\\nvalue = 6.889'),\n",
|
|||
|
" Text(0.7512631169840653, 0.3611111111111111, 'x[9] <= 1.055\\nsquared_error = 0.055\\nsamples = 17\\nvalue = 6.941'),\n",
|
|||
|
" Text(0.7481539059463661, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 16\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.7543723280217645, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7574815390594637, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7605907500971628, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.763699961134862, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8087835211815002, 0.6944444444444444, 'x[6] <= 52.0\\nsquared_error = 0.567\\nsamples = 42\\nvalue = 6.167'),\n",
|
|||
|
" Text(0.7916828604741547, 0.6388888888888888, 'x[2] <= 0.47\\nsquared_error = 0.444\\nsamples = 28\\nvalue = 6.357'),\n",
|
|||
|
" Text(0.779246016323358, 0.5833333333333334, 'x[7] <= 0.994\\nsquared_error = 0.349\\nsamples = 18\\nvalue = 6.611'),\n",
|
|||
|
" Text(0.7730275942479595, 0.5277777777777778, 'x[1] <= 0.185\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.667'),\n",
|
|||
|
" Text(0.7699183832102604, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.7761368052856588, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7854644383987563, 0.5277777777777778, 'x[2] <= 0.335\\nsquared_error = 0.16\\nsamples = 15\\nvalue = 6.8'),\n",
|
|||
|
" Text(0.7823552273610571, 0.4722222222222222, 'x[1] <= 0.315\\nsquared_error = 0.24\\nsamples = 5\\nvalue = 6.4'),\n",
|
|||
|
" Text(0.779246016323358, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.7854644383987563, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.7885736494364555, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 10\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.8041197046249514, 0.5833333333333334, 'x[10] <= 10.65\\nsquared_error = 0.29\\nsamples = 10\\nvalue = 5.9'),\n",
|
|||
|
" Text(0.7979012825495531, 0.5277777777777778, 'x[7] <= 0.997\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.7947920715118538, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8010104935872522, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8103381267003498, 0.5277777777777778, 'x[5] <= 5.5\\nsquared_error = 0.122\\nsamples = 7\\nvalue = 6.143'),\n",
|
|||
|
" Text(0.8072289156626506, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.813447337738049, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 6\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8258841818888457, 0.6388888888888888, 'x[0] <= 8.05\\nsquared_error = 0.597\\nsamples = 14\\nvalue = 5.786'),\n",
|
|||
|
" Text(0.8196657598134474, 0.5833333333333334, 'x[10] <= 11.35\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 5.167'),\n",
|
|||
|
" Text(0.8165565487757481, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 5\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8227749708511465, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8321026039642441, 0.5833333333333334, 'x[2] <= 0.56\\nsquared_error = 0.438\\nsamples = 8\\nvalue = 6.25'),\n",
|
|||
|
" Text(0.8289933929265448, 0.5277777777777778, 'x[1] <= 0.345\\nsquared_error = 0.245\\nsamples = 7\\nvalue = 6.429'),\n",
|
|||
|
" Text(0.8258841818888457, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 3\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.8321026039642441, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 4\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8352118150019433, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8717450446949087, 0.75, 'x[4] <= 0.093\\nsquared_error = 0.381\\nsamples = 85\\nvalue = 5.918'),\n",
|
|||
|
" Text(0.8585308977846872, 0.6944444444444444, 'x[6] <= 73.5\\nsquared_error = 0.279\\nsamples = 68\\nvalue = 6.015'),\n",
|
|||
|
" Text(0.8507578701904391, 0.6388888888888888, 'x[10] <= 11.45\\nsquared_error = 0.235\\nsamples = 62\\nvalue = 6.081'),\n",
|
|||
|
" Text(0.8445394481150408, 0.5833333333333334, 'x[4] <= 0.09\\nsquared_error = 0.206\\nsamples = 58\\nvalue = 6.034'),\n",
|
|||
|
" Text(0.8414302370773417, 0.5277777777777778, 'x[8] <= 3.57\\nsquared_error = 0.179\\nsamples = 56\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8383210260396424, 0.4722222222222222, 'x[10] <= 10.575\\nsquared_error = 0.147\\nsamples = 54\\nvalue = 5.963'),\n",
|
|||
|
" Text(0.8352118150019433, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.8414302370773417, 0.4166666666666667, 'x[7] <= 1.0\\nsquared_error = 0.129\\nsamples = 53\\nvalue = 5.943'),\n",
|
|||
|
" Text(0.8328799067236689, 0.3611111111111111, 'x[2] <= 0.29\\nsquared_error = 0.104\\nsamples = 48\\nvalue = 5.979'),\n",
|
|||
|
" Text(0.8251068791294209, 0.3055555555555556, 'x[6] <= 36.5\\nsquared_error = 0.09\\nsamples = 30\\nvalue = 5.9'),\n",
|
|||
|
" Text(0.8219976680917217, 0.25, 'x[0] <= 7.7\\nsquared_error = 0.152\\nsamples = 16\\nvalue = 5.812'),\n",
|
|||
|
" Text(0.8157792460163233, 0.19444444444444445, 'x[10] <= 10.7\\nsquared_error = 0.071\\nsamples = 13\\nvalue = 5.923'),\n",
|
|||
|
" Text(0.8126700349786242, 0.1388888888888889, 'x[7] <= 0.995\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 5.5'),\n",
|
|||
|
" Text(0.809560823940925, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8157792460163233, 0.08333333333333333, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8188884570540226, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 11\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8282160901671201, 0.19444444444444445, 'x[1] <= 0.762\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.8251068791294209, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8313253012048193, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8282160901671201, 0.25, 'squared_error = 0.0\\nsamples = 14\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8406529343179169, 0.3055555555555556, 'x[2] <= 0.315\\nsquared_error = 0.099\\nsamples = 18\\nvalue = 6.111'),\n",
|
|||
|
" Text(0.8375437232802176, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.843762145355616, 0.25, 'x[7] <= 0.996\\nsquared_error = 0.055\\nsamples = 17\\nvalue = 6.059'),\n",
|
|||
|
" Text(0.8406529343179169, 0.19444444444444445, 'x[4] <= 0.076\\nsquared_error = 0.25\\nsamples = 2\\nvalue = 6.5'),\n",
|
|||
|
" Text(0.8375437232802176, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.843762145355616, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8468713563933152, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 15\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8499805674310144, 0.3611111111111111, 'x[7] <= 1.0\\nsquared_error = 0.24\\nsamples = 5\\nvalue = 5.6'),\n",
|
|||
|
" Text(0.8468713563933152, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8530897784687136, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8445394481150408, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.84764865915274, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.8569762922658375, 0.5833333333333334, 'x[0] <= 10.05\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 6.75'),\n",
|
|||
|
" Text(0.8538670812281384, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 3\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.8600855033035367, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8663039253789351, 0.6388888888888888, 'x[9] <= 0.69\\nsquared_error = 0.222\\nsamples = 6\\nvalue = 5.333'),\n",
|
|||
|
" Text(0.863194714341236, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8694131364166343, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 4\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8849591916051301, 0.6944444444444444, 'x[10] <= 11.15\\nsquared_error = 0.602\\nsamples = 17\\nvalue = 5.529'),\n",
|
|||
|
" Text(0.8787407695297318, 0.6388888888888888, 'x[0] <= 8.0\\nsquared_error = 0.286\\nsamples = 7\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8756315584920327, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 4.0'),\n",
|
|||
|
" Text(0.881849980567431, 0.5833333333333334, 'x[5] <= 7.5\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 5.167'),\n",
|
|||
|
" Text(0.8787407695297318, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.8849591916051301, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 5\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8911776136805286, 0.6388888888888888, 'x[6] <= 18.0\\nsquared_error = 0.49\\nsamples = 10\\nvalue = 5.9'),\n",
|
|||
|
" Text(0.8880684026428294, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 2\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.8942868247182277, 0.5833333333333334, 'x[1] <= 0.782\\nsquared_error = 0.359\\nsamples = 8\\nvalue = 6.125'),\n",
|
|||
|
" Text(0.8911776136805286, 0.5277777777777778, 'x[8] <= 3.055\\nsquared_error = 0.204\\nsamples = 7\\nvalue = 6.286'),\n",
|
|||
|
" Text(0.8880684026428294, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.8942868247182277, 0.4722222222222222, 'x[4] <= 0.119\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 6.167'),\n",
|
|||
|
" Text(0.8911776136805286, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 5\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.897396035755927, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.897396035755927, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.9351923824329577, 0.8055555555555556, 'x[7] <= 0.993\\nsquared_error = 0.41\\nsamples = 117\\nvalue = 6.667'),\n",
|
|||
|
" Text(0.9036144578313253, 0.75, 'x[1] <= 0.4\\nsquared_error = 0.438\\nsamples = 13\\nvalue = 7.154'),\n",
|
|||
|
" Text(0.9005052467936261, 0.6944444444444444, 'squared_error = 0.0\\nsamples = 2\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9067236688690244, 0.6944444444444444, 'x[0] <= 5.45\\nsquared_error = 0.231\\nsamples = 11\\nvalue = 7.364'),\n",
|
|||
|
" Text(0.9036144578313253, 0.6388888888888888, 'x[4] <= 0.054\\nsquared_error = 0.109\\nsamples = 8\\nvalue = 7.125'),\n",
|
|||
|
" Text(0.9005052467936261, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 7\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.9067236688690244, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.9098328799067237, 0.6388888888888888, 'squared_error = 0.0\\nsamples = 3\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.96677030703459, 0.75, 'x[6] <= 56.5\\nsquared_error = 0.373\\nsamples = 104\\nvalue = 6.606'),\n",
|
|||
|
" Text(0.9397590361445783, 0.6944444444444444, 'x[9] <= 0.685\\nsquared_error = 0.352\\nsamples = 90\\nvalue = 6.678'),\n",
|
|||
|
" Text(0.9191605130198213, 0.6388888888888888, 'x[6] <= 17.5\\nsquared_error = 0.216\\nsamples = 19\\nvalue = 6.316'),\n",
|
|||
|
" Text(0.9129420909444228, 0.5833333333333334, 'x[1] <= 0.328\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 6.833'),\n",
|
|||
|
" Text(0.9098328799067237, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.916051301982122, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 5\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.9253789350952196, 0.5833333333333334, 'x[3] <= 5.05\\nsquared_error = 0.071\\nsamples = 13\\nvalue = 6.077'),\n",
|
|||
|
" Text(0.9222697240575204, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 12\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9284881461329187, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.9603575592693354, 0.6388888888888888, 'x[10] <= 12.45\\nsquared_error = 0.344\\nsamples = 71\\nvalue = 6.775'),\n",
|
|||
|
" Text(0.9455888068402643, 0.5833333333333334, 'x[6] <= 34.5\\nsquared_error = 0.304\\nsamples = 50\\nvalue = 6.66'),\n",
|
|||
|
" Text(0.9347065682083171, 0.5277777777777778, 'x[5] <= 5.5\\nsquared_error = 0.228\\nsamples = 36\\nvalue = 6.778'),\n",
|
|||
|
" Text(0.9284881461329187, 0.4722222222222222, 'x[6] <= 10.0\\nsquared_error = 0.139\\nsamples = 6\\nvalue = 6.167'),\n",
|
|||
|
" Text(0.9253789350952196, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.931597357170618, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 5\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9409249902837155, 0.4722222222222222, 'x[9] <= 0.695\\nsquared_error = 0.157\\nsamples = 30\\nvalue = 6.9'),\n",
|
|||
|
" Text(0.9378157792460163, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.9440342013214147, 0.4166666666666667, 'x[3] <= 1.65\\nsquared_error = 0.119\\nsamples = 29\\nvalue = 6.862'),\n",
|
|||
|
" Text(0.9409249902837155, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9471434123591139, 0.3611111111111111, 'x[4] <= 0.053\\nsquared_error = 0.096\\nsamples = 28\\nvalue = 6.893'),\n",
|
|||
|
" Text(0.9440342013214147, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.950252623396813, 0.3055555555555556, 'x[4] <= 0.161\\nsquared_error = 0.069\\nsamples = 27\\nvalue = 6.926'),\n",
|
|||
|
" Text(0.9471434123591139, 0.25, 'x[7] <= 0.998\\nsquared_error = 0.037\\nsamples = 26\\nvalue = 6.962'),\n",
|
|||
|
" Text(0.9440342013214147, 0.19444444444444445, 'squared_error = 0.0\\nsamples = 22\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.950252623396813, 0.19444444444444445, 'x[7] <= 0.998\\nsquared_error = 0.188\\nsamples = 4\\nvalue = 6.75'),\n",
|
|||
|
" Text(0.9471434123591139, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9533618344345123, 0.1388888888888889, 'squared_error = 0.0\\nsamples = 3\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.9533618344345123, 0.25, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9564710454722114, 0.5277777777777778, 'x[6] <= 47.0\\nsquared_error = 0.372\\nsamples = 14\\nvalue = 6.357'),\n",
|
|||
|
" Text(0.9533618344345123, 0.4722222222222222, 'x[4] <= 0.06\\nsquared_error = 0.29\\nsamples = 10\\nvalue = 6.1'),\n",
|
|||
|
" Text(0.950252623396813, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.9564710454722114, 0.4166666666666667, 'x[3] <= 2.35\\nsquared_error = 0.173\\nsamples = 9\\nvalue = 6.222'),\n",
|
|||
|
" Text(0.9533618344345123, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 6\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9595802565099106, 0.3611111111111111, 'x[5] <= 19.0\\nsquared_error = 0.222\\nsamples = 3\\nvalue = 6.667'),\n",
|
|||
|
" Text(0.9564710454722114, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.9626894675476098, 0.3055555555555556, 'squared_error = 0.0\\nsamples = 1\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9595802565099106, 0.4722222222222222, 'squared_error = 0.0\\nsamples = 4\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.9751263116984066, 0.5833333333333334, 'x[9] <= 0.695\\nsquared_error = 0.331\\nsamples = 21\\nvalue = 7.048'),\n",
|
|||
|
" Text(0.9720171006607073, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 2\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.9782355227361057, 0.5277777777777778, 'x[0] <= 8.75\\nsquared_error = 0.26\\nsamples = 19\\nvalue = 6.947'),\n",
|
|||
|
" Text(0.9720171006607073, 0.4722222222222222, 'x[9] <= 0.85\\nsquared_error = 0.13\\nsamples = 13\\nvalue = 7.154'),\n",
|
|||
|
" Text(0.9689078896230081, 0.4166666666666667, 'x[6] <= 44.0\\nsquared_error = 0.076\\nsamples = 12\\nvalue = 7.083'),\n",
|
|||
|
" Text(0.965798678585309, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 11\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.9720171006607073, 0.3611111111111111, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.9751263116984066, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 1\\nvalue = 8.0'),\n",
|
|||
|
" Text(0.9844539448115041, 0.4722222222222222, 'x[5] <= 8.5\\nsquared_error = 0.25\\nsamples = 6\\nvalue = 6.5'),\n",
|
|||
|
" Text(0.9813447337738049, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 3\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9875631558492033, 0.4166666666666667, 'squared_error = 0.0\\nsamples = 3\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.9937815779246016, 0.6944444444444444, 'x[2] <= 0.69\\nsquared_error = 0.265\\nsamples = 14\\nvalue = 6.143'),\n",
|
|||
|
" Text(0.9906723668869024, 0.6388888888888888, 'x[10] <= 13.9\\nsquared_error = 0.167\\nsamples = 12\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9875631558492033, 0.5833333333333334, 'x[0] <= 9.15\\nsquared_error = 0.083\\nsamples = 11\\nvalue = 6.091'),\n",
|
|||
|
" Text(0.9844539448115041, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 10\\nvalue = 6.0'),\n",
|
|||
|
" Text(0.9906723668869024, 0.5277777777777778, 'squared_error = 0.0\\nsamples = 1\\nvalue = 7.0'),\n",
|
|||
|
" Text(0.9937815779246016, 0.5833333333333334, 'squared_error = 0.0\\nsamples = 1\\nvalue = 5.0'),\n",
|
|||
|
" Text(0.9968907889623008, 0.6388888888888888, 'squared_error = 0.0\\nsamples = 2\\nvalue = 7.0')]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 128,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAGFCAYAAAB65hCBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeVxU1fvHP7OwDQPMsCiKILuiQigqbkm5lVupqV8zc2lP28zMNr9mtnzbTE1tL7cys8zdolwyhUTBPQIFBFRQBhEY9pl5fn/4u7dZ7p25Mwyb3vfr5cvh3nOe85xznvPcc5fzHAkREUREREREREREBCJtaQVERERERERE2hbi5EFERERERETELsTJg4iIiIiIiIhdiJMHEREREREREbsQJw8iIiIiIiIidiFOHkRERERERETsQpw8iIiIiIiIiNiFOHkQERERERERsQtx8iAiIiIiIiJiF+LkQURERERERMQuxMmDiIiIiIiIiF2IkwcRERERERERuxAnDyIiIiIiIiJ2IU4eREREREREROxC3tIKiIiIND8FBQXQaDSNkuHv74+QkBAnaSQiItKWECcPIiK3GAUFBYiJiUF1dXWj5CgUCmRmZooTCBGRWxBx8iAicouh0WhQXV2NDRs2ICYmxiEZmZmZmDZtGjQajTh5EBG5BRG/eRARuUWJiYlBr169oNFo0NDQgKKiInh4eECv1yMgIAAxMTGorKxEbW0tioqKUFZWhqKiIvTq1cvhSYeIiMjNgfjkQUTkFmfYsGEoKSlBYmIiioqKTCYGSUlJLaiZiIhIa0WcPIiI3MQQES5fvoxz584hOzsb586dw9GjRwEAycnJqKysREBAABoaGnD48GEQESIiIlBeXg4AUKvViIyMhFarRUZGBoKDg1FaWoqsrCwAwJIlS9C/f39ERUUhOjoaERERcHd3b7H6ioiINA/i5EFEpI1DRNBoNCYTBOb3+fPnUVVVBQCQSqUICwtDu3btAAAjRoxAr169sGXLFgQEBEAmk6GiogK//vor+vbti/j4eMjlchw/fhxarRaenp7Q6XQYPHgwlEolACArKwv79u1DRUUFAEAikSAkJISdTERFRbG/Q0ND4eLi0jKNJCIi4lQkREQtrYSIiIhtysvLOScI586dw/Xr19l0wcHBJhdv5v+wsDC4uroiIyMDCQkJJh9MpqenIzs7G2FhYaipqUFCQgJkMhkyMjKgVCpRVlaGgIAAxMbGAvj3g8n09HT07NkTV69e5Z281NTUAADkcjnCwsI4JxbBwcGQSsVPsERE2gri5EFEpBVRXV2N8+fPc04Qrl69yqZr37495wQhIiICCoXCahnNuVTTYDDg0qVLnBOL3NxcNDQ0AADc3NwQGRnJObEIDAyERCJplK4iIiLORZw8iIg0M/X19cjNzeWcIFy8eJFNp1KpEB0dbXExjYqKgre3d6N0aA1BonQ6HfLz8zknFvn5+TAYDAAApVJpUX/mt5+fX6PqICIi4hji5EFEpAnQ6/XIz8/nnCBcuHCBvTB6enpyXhSjoqLg5+d3y95x19XVITc316TdmP8vXbrEplOr1RZPX5h/jZ1giYiI8CNOHkREHMRgMODy5cucE4ScnByTR/IRERGcE4QOHTrcshMER6mqqsL58+c5JxYlJSVsuvbt23O2eWRkJDw8PFqwBiIibR9x8iAiYgUiQklJCecE4dy5c+zHgDKZzOJjQOb/4OBgyGSyFq7JrcH169ct+on5n1l+Ctj+qFRERMQ64uRBRARAWVkZ5+QgOzvbZBmitYuOuAyx9cIsZzWfUDArQpiPR2UyGUJDQzn7OCQkRJwEioj8P+LkQeSWoaqqiveu1PjjwcDAQN6VDOLj7psPJpAW18TC+PWTq6srIiIiOG2jY8eO4usnkVsKcfIgclNRV1eHnJwczgnC5cuX2XQKhQI9evRAly5dLN6Hix/aiTDo9XoUFBRY2NLx48dx9epVMO5ToVBYfFvB/O/v7y9OLERuOsTJg0ibQ6fT4cKFC5wThPz8fNahM0v8uL7GF5f4iTSW+vp65OXlcT6xMF5y6+PjY2GDzP8+Pj4tWAMREccRJw8irRKDwYCLFy9yfqiYm5sLnU4H4N/gQlwTBDG4kEhLUV1djZycHM6JhXGwr4CAAE7bjYyMhKenZwvWQETEOuLkQaTFICJcuXLFwsGeO3cO58+fR21tLYB/wxpz3b116tRJDGss0qYoLy83iSJq/L9xmPGgoCDOiUV4eDjc3NxargIiIhAnDyLNwLVr1zgnCNnZ2dBqtQD+3VCJa4LQuXNncSWDyE0PEaG0tJTzddy5c+dMNjjr3LkzZwyLzp07Qy4X9zsUaXrEycNNQkuHG66srORdyXDt2jU2XceOHTk/LAsPDxe3chYR4YGIUFRUxDm+cnJyUFdXBwBwcXFBeHg458QiKCjI4ad0zvAvQONDmou0HsTJw01Ac210VFNTw7uSobi4mE3n7+/PGXI5MjKS3cpZRETEOej1ehQWFnKOy7y8POj1egCAh4eHyfdBxmO0Xbt2vN8HOcu/AMI2UxNpG4jPt24CNBoNqqurTbZYthdmi2WNRsMO7CeeeAJbt25Fjx49cO7cORQWFrIrGby9vVnnc+edd5o4IrVa7bS6iYiIWIcJbBUaGorhw4ebnGtoaEBeXp7FxOK7777jHM8KhQLnzp3DX3/9hc6dOwNwjn8BuH2MSNtFnDzcRMTExKBXr15Ok/fTTz9Bo9Fg4MCBmDp1qskdi7U7FRERkdaBi4sLuzPr6NGjTc5xPUncvXs3iouLceDAAcyYMcMkvbP9i0jbRpw83IQkJydDoVBAIpFApVIhMDAQrq6uOHToEIAbOzlWVlZaOBNzrly5goaGBvHLbhGRmxAPDw/06NEDPXr0YI8REerq6mx+f2TNx3h5eaGkpASurq42fYxI20WcPNxEpKenw93dHQEBATh+/DgMBgN69+6NM2fOALix9CsyMhJarRYZGRm4dOkSiouLodPpOD+kkkql4sRBROQWQiKR8E4ckpOTUVlZiYCAAME+pry8HH///Tfq6+uhUCiasyoiTYy4QP4mIiEhAd26dUNeXh4bve748eM4ceIEDAYDgoODodfrkZeXhytXruDChQtISEhAYmKiuOGPiIiIVUaMGIGkpCRBPub06dO4evUqcnJy0L9/fyQlJYk+5iZDfPLQxjEYDDh27JjJsQkTJljNk5iYiMTExKZUS0RE5CbGlo8ZOnRoM2ki0lKIk4c2Sl5eHtatW4e1a9ciLy8PwI2vmYEbry+ys7MRFhaGmpoaJCQkQCaTISMjA56ennBxcUFlZSUGDBjAymPyPvfcc3j22WcxduxYuLq6Nn/FREREWg0XL17E6tWrAfzrIwB+H5Oens5+8wDceFrBwOTPyMhAz549xQ+u2zhinIc2hFarxU8//YQ1a9bgwIEDUCqV+M9//oORI0di+vTpjV6H7ebmhq5du+LkyZPw8/PD1KlTMXPmTHGgi4jcQhAR9u/fj1WrVmHbtm1wc3ODTqdDfX19o2XLZDLo9XrExcVh9uzZeOCBB8TYL20UcfLQyiEi/Pnnn/jmm2+wefNmVFVVYciQIZg5cyYmTJjAbp7jzAiTZ8+exdq1a7F+/XoUFxcjNjYWM2fOxAMPPID27ds7o1oiIiKtjIqKCqxbtw6rV69GZmYmunXrhjlz5uDBBx9EWVmZUyJM+vr6Ijs7G6tWrcLOnTuhVCoxa9YszJ49G9HR0U6ohUhzIU4eWikXLlxgX0vk5uYiPDwcM2fOxPTp09ngLU2NTqdDcnIyvvnmG2zfvh16vR6jRo3CrFmzMHr0aPG1hojITcDZs2exatUqrF+/HjU1NRg/fjzmzJmDpKSkJn3imJ+fj08//RRffvklNBoNhg8fjjlz5mDMmDHix5VtAHHy0IqoqqrCli1b8M0332D//v3w9PTE5MmTMWvWLAwaNKhFXx2Ulpbi+++/x5o1a3Ds2DH4+fnhgQcewMyZMxEfHy++1hARaUM0NDRg69atWLVqFf744w8EBgbisccew6OPPopOnTo1qy6
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 640x480 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"regressor = DecisionTreeRegressor()\n",
|
|||
|
"regressor.fit(X_train, y_train)\n",
|
|||
|
"tree.plot_tree(regressor)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 129,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
" Actual Predicted\n",
|
|||
|
"0 6 5.0\n",
|
|||
|
"1 5 6.0\n",
|
|||
|
"2 7 7.0\n",
|
|||
|
"3 6 5.0\n",
|
|||
|
"4 5 5.0\n",
|
|||
|
".. ... ...\n",
|
|||
|
"315 6 6.0\n",
|
|||
|
"316 4 7.0\n",
|
|||
|
"317 5 5.0\n",
|
|||
|
"318 4 5.0\n",
|
|||
|
"319 6 7.0\n",
|
|||
|
"\n",
|
|||
|
"[320 rows x 2 columns]\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"y_pred = regressor.predict(X_test)\n",
|
|||
|
"df = pd.DataFrame({'Actual':y_test, 'Predicted':y_pred})\n",
|
|||
|
"print(df)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 130,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"MSE: 0.709375\n",
|
|||
|
"MAE: 0.465625\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"8.261588715046605"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 130,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print('MSE:', metrics.mean_squared_error(y_test, y_pred))\n",
|
|||
|
"print('MAE:', metrics.mean_absolute_error(y_test, y_pred))\n",
|
|||
|
"\n",
|
|||
|
"metrics.mean_absolute_error(y_test, y_pred) / np.average(y) * 100"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.11.0"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|